A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Tatum, A.

Paper Title Page
RPPT064 Holifield Radioactive Ion Beam Facility Development and Status 3641
 
  • A. Tatum, J.R. Beene
    ORNL, Oak Ridge, Tennessee
 
  Funding: Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

The Holifield Radioactive Ion Beam Facility (HRIBF) is a national user facility dedicated to nuclear structure, reactions, and nuclear astrophysics research with radioactive ion beams (RIBs) using the isotope separator on-line (ISOL) technique. An integrated strategic plan for physics, experimental systems, and RIB production facilities have been developed and implementation of the plan is under way. Specific research objectives are defined for studying the nature of nucleonic matter, the origin of elements, solar physics, and synthesis of heavy elements. Experimental systems upgrade plans include new detector arrays and beam lines, and expansion and upgrade of existing devices. A multifaceted facility expansion plan includes a $4.75M High Power Target Laboratory (HPTL), presently under construction, to provide a facility for testing new target materials, target geometries, ion sources, and beam preparation techniques. Additional planned upgrades include a second RIB production system (IRIS2), an external axial injection system for the present driver cyclotron, ORIC, and an additional driver accelerator for producing high-intensity neutron-rich beams.

 
FPAE032 ORIC Beam Energy Increase 2257
 
  • M.L. Mallory, J.B. Ball, D. Dowling, E. D. H. Hudson, R. S. L. Lord, A. Tatum
    ORNL, Oak Ridge, Tennessee
 
  Funding: Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05=00OR 22725.

The detection of and solution to a beam interference problem in the Oak Ridge Isochronous Cyclotron (ORIC) extraction system has yielded a 20% increase in the proton beam energy. The beam from ORIC was designed to be extracted before the nu r equal one resonance. Most cyclotrons extract after the nu r equal one resonance, thus getting more usage of the magnetic field for energy acceleration. We have now determined that the electrostatic deflector septum interferes with the last accelerated orbit in ORIC, with the highest extraction efficiency obtained near the maximum nu r value. This nu r provides a rotation in the betatron oscillation amplitude that is about the same length as the electrostatic septum thus allowing the beam to jump over the interference problem with the septum. With a thinned septum we were able to tune the beam through the nu r equal one resonance and achieve a 20% increase in beam energy. This nu r greater than one extraction method may be desirable for very high field cyclotrons since it provides ten times the clearance at extraction compared to dee voltage gain, thus allowing the possibility of utilizing a magnetic extractor.