A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Stupakov, G.V.

Paper Title Page
MPPP046 Transient Resistive Wall Wake for Very Short Bunches 2926
 
  • G.V. Stupakov
    SLAC, Menlo Park, California
 
  Funding: Work supported by U.S. Department of Energy, contract DE-AC03-76SF00515.

The catch up distance for the resistive wall wake in a round pipe is approximately equal to the square of the pipe radius divided by the bunch length. The standard formulae for this wake are applicable at distances much larger than the catch up distance. For extremely short bunches, considered recently by Zholents and Fawley in application for SASE (PRL, vol. 92, p. 224801), this formation length can be tens of meters. In this paper, we calculate the resistive wall wake for such a beam at distances compared with the catch up distance assuming a constant wall conductivity. We also discuss how the derivation can be modified to include the frequency dependence of the conductivity characteristic for very short wavelength.

 
TPAT062 Uncorrelated Energy Spread and Longitudinal Emittance for a Photoinjector Beam 3570
 
  • Z. Huang, D. Dowell, P. Emma, C. Limborg-Deprey, G.V. Stupakov, J. Wu
    SLAC, Menlo Park, California
 
  Longitudinal phase space properties of a photoinjector beam are important in many areas of high-brightness beam applications such as bunch compression, transverse-to-longitudinal emittance exchange, and high-gain free-electron lasers. In this paper, we discuss both the rf and the space charge contributions to the uncorrelated energy spread of the beam generated from a laser-driven rf gun. We compare analytical expressions for the uncorrelated energy spread and the longitudinal emittance with numerical simulations and recent experimental results.  
RPPE057 Resistive Wall Wakefield in the LCLS Undulator 3390
 
  • K.L.F. Bane, G.V. Stupakov
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U.S. Department of Energy, contract DE-AC03-76SF00515.

In the Linac Coherent Light Source (LCLS), a short, intense bunch (rms length 20 microns, bunch charge 1 nC) will pass through a small, long undulator beam pipe (radius 2.5 mm, length 130 m). The wakefields in the undulator, particularly the resistive wall wake of the beam pipe, will induce an energy variation along the bunch, a variation that needs to be kept to within a few times the Pierce parameter for all beam particles to continue to lase. Earlier calculations included the short-range resistive wall wake, but did not include the frequency dependence of conductivity (ac conductivity) of the beam pipe walls. We show that for copper and for the LCLS bunch structure, including the ac conductivity results in a very large effect. We show that the effect can be ameliorated by choosing aluminum and also by taking a flat, rather than round, beam pipe chamber (if the vertical aperture is fixed). The effect of the (high frequency) anomalous skin effect is also considered.

 
RPPT028 Free Electron Lasers with Slowly Varying Beam and Undulator Parameters 2059
 
  • Z. Huang, G.V. Stupakov
    SLAC, Menlo Park, California
 
  The performance of a free electron lasers (FEL) is affected when the electron beam energy varies alone the undulator as would be caused by vacuum pipe wakefields and/or when the undulator strength parameter is tapered in the small signal regime until FEL saturation. In this paper, we present a self-consistent theory of FELs with slowly-varying beam and undulator parameters. A general method is developed to apply the WKB approximation to the beam-radiation system by employing the adjoint eigenvector that is orthogonal to the eigenfunctions of the coupled Maxwell-Vlasov equations. This method may be useful for other slowly varying processes in beam dynamics.  
RPPT035 Optimization of the LCLS X-Rray FEL Output Performance in the Presence of Strong Undulator Wakefields 2396
 
  • S. Reiche
    UCLA, Los Angeles, California
  • K.L.F. Bane, P. Emma, Z. Huang, H.-D. Nuhn, G.V. Stupakov
    SLAC, Menlo Park, California
  • W.M. Fawley
    LBNL, Berkeley, California
 
  Funding: The work was supported by the DOE Contract No. DE-AC02-76SF00515.

The Linac Coherent Light Source (LCLS) Free-Electron Laser will operate in the wavelength range of 1.5 to 15 Angstroms. Energy loss due to wakefields within the long undulator can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber material (e.g. Cu) and its radius. To study the expected performance in the presence of these wakefields, we make a series of "start-to-end" simulations with tracking codes PARMELA and ELEGANT and time-dependent FEL simulation codes Genesis 1.3 and Ginger. We discuss the impact of the wakefield on output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation obtained with a slight z dependent taper in the undulator field. We compare these results to those obtained by decreasing the bunch charge or increasing the vacuum chamber radius. We also compare our results to those predicted in concurrent analytical work.