A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Sinclair, C.K.

Paper Title Page
WPAE025 Design for a 1.3 MW, 13 MeV Beam Dump for an Energy Recovery Linac 1877
 
  • C.K. Sinclair
    Cornell University, Department of Physics, Ithaca, New York
  • Y. He, C.H. Smith
    Cornell University, Ithaca, New York
 
  Funding: Work supported by Cornell University.

The electron beam exiting an Energy Recovery Linac (ERL) is dumped close to the injection energy. This energy is chosen as low as possible while allowing the beam quality specifications to be met. As ERLs are designed for high average beam current, beam dumps are required to handle high beam power at low energy. Low energy electrons have a short range in practical dump materials, requiring the beam size at the dump face be enlarged to give acceptable power densities and heat fluxes. Cornell University is developing a 100 mA average current ERL as a synchrotron radiation source. The 13 MeV optimum injection energy requires a 1.3 MW beam dump. We present a mature design for this dump, using an array of water-cooled extruded copper tubes. This array is mounted in the accelerator vacuum normal to the beam. Fatigue failure resulting from abrupt thermal cycles associated with beam trips is a potential failure mechanism. We report on designs for a 75 kW, 750 keV tube-cooled beryllium plate dump for electron gun testing, and a 500 kW, 5 to 15 MeV copper tube dump for use with the prototype injector under development. We expect to test the beryllium dump within a year, and the higher power copper dump within 2-1/2 years.

 
WPAP031 Use of Multiobjective Evolutionary Algorithms in High Brightness Electron Source Design 2188
 
  • I.V. Bazarov, C.K. Sinclair
    Cornell University, Department of Physics, Ithaca, New York
  • I. Senderovich
    Cornell University, Ithaca, New York
 
  Funding: Supported by Cornell University.

We describe the use of multiobjective evolutionary algorithms (MOEAs) for the design and optimization of a high average current, high brightness electron injector for an Energy Recovery Linac (ERL). By combining MOEAs with particle tracking, including space charge effects, and by employing parallel computing resources, we explored a multidimensional parameter space with 22 independent variables for a DC gun based injector which is being constructed at Cornell University. The simulated performance of the optimized injector is found to be excellent, with normalized rms emittances as low as 0.1 mm-mrad for a 77 pC bunch, and 0.7 mm-mrad for a 1 nC bunch. We detail the advantages and flexibility of MOEAs as a powerful tool well suited for wide application in solving various problems in the accelerator field.

 
WPAP042 Progress on Using NEA Cathodes in an RF Gun 2708
 
  • R.P. Fliller, T. G. Anderson, H. Edwards
    Fermilab, Batavia, Illinois
  • H. Bluem, T. Schultheiss
    AES, Medford, NY
  • M. Huening
    DESY, Hamburg
  • C.K. Sinclair
    Cornell University, Department of Physics, Ithaca, New York
 
  Funding: This work was supported by Universities Research Association Inc. under contract DE-AC02-76CH00300 with the U.S. DOE and by NICADD. AES personnel were supported under DOE SBIR contract #DE-FG02-04ER838.

RF guns have proven useful in multiple accelerator applications, and are an attractive electron source for the ILC. Using a NEA GaAs photocathode in such a gun allows for the production of polarized electron beams. However the lifetime of a NEA cathode in this environment is reduced by ion and electron bombardment and residual gas oxidation. We report progress made with studies to produce a RF gun using a NEA GaAs photocathode to produce polarized electron beams. Attempts to reduce the residual gas pressure in the gun are discussed. Initial measurements of ion flux through the cathode port are compared with simulations of ion bombardment. Future directions are also discussed.

 
RPPT026 Status of a Plan for an ERL Extension to CESR 1928
 
  • G. Hoffstaetter, S.A. Belomestnykh, J.S.-H. Choi, Z. Greenwald, M. Liepe, H. Padamsee, D. Sagan, C. Song, R.M. Talman, M. Tigner
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • I.V. Bazarov, K.W. Smolenski
    Cornell University, Ithaca, New York
  • D.H. Bilderback, M.G. Billing, S.M. Gruner, Y. Li, C.K. Sinclair
    Cornell University, Department of Physics, Ithaca, New York
 
  Funding: Cornell University.

We describe the status of plans to build an Energy-Recovery Linac (ERL) X-ray facility at Cornell University. This 5 GeV ERL is an upgrade of the CESR ring that currently powers the Cornell High Energy Synchrotron Source (CHESS). Due to its very small electron-beam emittances, it would dramatically improve the capabilities of the light source and result in X-ray beams orders of magnitude better than any existing storage ring light source. The emittances are based upon simulations for currents that are competitive with ring-based sources. The ERL design that is presented has to allow for non-destructive transport of these small emittances. The design includes a series of X-ray beamlines for specific areas of research. As an upgrade of the existing storage ring, special attention is given to reuse of many of the existing ring components. Options of bunch compression are discussed, tolerances for emittance growth are specified, and simulations of the beam-breakup instability and methods of increasing its threshold current are shown. This planned upgrade illustrates how other existing storage rings could be upgraded as ERL light sources with vastly improved beam qualities.