A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Shatilov, D.N.

Paper Title Page
TPAT083 Computational Study of the Beam-Beam Effect in Tevatron Using the LIFETRAC Code 4117
 
  • A. Valishev, Y. Alexahin, V. Lebedev
    Fermilab, Batavia, Illinois
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk
 
  Funding: Work supported by the Universities Research Assos., Inc., under contract DE-AC02-76CH03000 with the U.S. Dept. of Energy.

Results of a comprehensive numerical study of the beam-beam effect in the Tevatron are presented including the dependence of the luminosity lifetime on the tunes, chromaticity and optics errors. These results help to understand the antiproton emittance blow-up routinely observed in the Tevatron after the beams are brought into collision. To predict a long term luminosity evolution, the diffusion rates are increased to represent long operation time (~day) by using a small number of simulated turns. To justify this approach, a special simulation study of interplay between nonlinear beam-beam resonances and diffusion has been conducted. A number of ways to mitigate the beam-beam effects are discussed, such as increasing bunch spacing, separation between the beams and beam-beam compensation with electron lenses.

 
TPAT084 LIFETRAC Code for the Weak-Strong Simulation of the Beam-Beam Effect in Tevatron 4138
 
  • A. Valishev, Y. Alexahin, V. Lebedev
    Fermilab, Batavia, Illinois
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk
 
  Funding: Work supported by the Universities Research Assos., Inc., under contract DE-AC02-76CH03000 with the U.S. Dept. of Energy.

A package of programs for weak-strong simulation of beam-beam effects in hadron colliders is described. Accelerator optics parameters relevant to the simulation are derived from beam measurements and calculations are made using OptiM optics code. The key part of the package is the upgraded version of the LIFETRAC code which now includes 2D coupled optics, chromatic modulation of beta-functions, non-Gaussian shape of the strong bunches and non-linear elements for beam-beam compensation. Parallel computations are used and in the case of the Tevatron (2 main IPs + 70 parasitic IPs) the code has a productivity of ~1·1010 particles*turns/day on a 32-node cluster of Pentium IV 1.8 GHz processors.

 
ROAA001 DAFNE Operation and Plans for DAFNE2 112
 
  • M. Zobov, D. Alesini, G. Benedetti, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, A. Clozza, G.O. Delle Monache, G. Di Pirro, A. Drago, A. Gallo, A. Ghigo, S. Guiducci, M. Incurvati, C. Ligi, F. Marcellini, G. Mazzitelli, C. Milardi, L. Pellegrino, M.A. Preger, P. Raimondi, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, C. Vaccarezza, M. Vescovi
    INFN/LNF, Frascati (Roma)
  • J.D. Fox, D. Teytelman
    SLAC, Menlo Park, California
  • E. Levichev, P.A. Piminov, D.N. Shatilov
    BINP SB RAS, Novosibirsk
 
  The e+e- collider DAFNE, a 1.02 Gev c.m. Phi-factory, has exceeded 1.2 1032 cm-2s-1 peak luminosity with 7.5 pb-1 maximum daily integrated luminosity. At the present performance the physics program of the three main experiments DEAR, FINUDA and KLOE will be completed by mid 2007. In this paper we describe the steps which have led to the luminosity improvement and present proposals for the upgrade of the collider towards higher energy and/or luminosity. The main accelerator issues on which we are planning to rely for this purpose, such as lattices with negative momentum compaction, strong RF focusing, design of high field magnets and Linac upgrade, are discussed in detail.  
ROAA003 Proposal of an Experiment on Bunch Length Modulation in DAFNE 336
 
  • C. Biscari, D. Alesini, G. Benedetti, M.E. Biagini, R. Boni, M. Boscolo, A. Clozza, G.O. Delle Monache, G. Di Pirro, A. Drago, A. Gallo, A. Ghigo, S. Guiducci, M. Incurvati, C. Ligi, F. Marcellini, G. Mazzitelli, C. Milardi, L. Pellegrino, M.A. Preger, P. Raimondi, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, C. Vaccarezza, M. Vescovi, M. Zobov
    INFN/LNF, Frascati (Roma)
  • J.M. Byrd, F. Sannibale
    LBNL, Berkeley, California
  • J.D. Fox, D. Teytelman
    SLAC, Menlo Park, California
  • E. Levichev, P.A. Piminov, D.N. Shatilov
    BINP SB RAS, Novosibirsk
  • C. Pagani
    INFN/LASA, Segrate (MI)
 
  Obtaining very short bunches is a challenge for colliders and Coherent Synchrotron Radiation sources as well. The modulation of the bunch length in a strong RF focusing regime has been proposed, corresponding to a large value of the synchrotron tune. A ring structure where the dependence of the longitudinal position of a particle on its energy (R56) along the ring oscillates between large positive and negative values can produce a bunch length modulation. The synchrotron frequency can be tuned both by means of the rf voltage and by the integral of R56, down to the limit of zero value corresponding to the isochronicity condition. We present here the proposal of bunch length modulation along the DAFNE rings. Its lattice can be tuned to positive or negative momentum compaction, or to structures in which the two arcs are alternately set to positive/negative integrals of R56. With the proposed installation of an extra RF system at 1.3 GHz, experiments on bunch length modulation both in the high and low synchrotron tune regimes can be realized.