A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Setoyama, H.

Paper Title Page
RPAE006 Feasibility Study on Introducing a Superconducting Wiggler to Saga Light Source 1021
 
  • S. Koda, Y. Iwasaki, T. Okajima, H. Setoyama, Y. Takabayashi, T. Tomimasu, K. Yoshida
    Saga Synchrotron Light Source, Industry Promotion Division, Saga City
  • H. Ohgaki
    Kyoto IAE, Kyoto
  • M. Torikoshi
    NIRS, Chiba-shi
 
  Saga light source (SAGA-LS) is the synchrotron radiation facility, which consists of 250 MeV electron linac and 1.4 GeV storage ring. We have a plan to introduce an existing superconducting wiggler, which has been developed for other project by National Institute of Radiological Sciences. The superconducting wiggler consists of a main pole of 7T and two side poles of 4T. Each pole is composed of a racetrack-shaped coil and an iron core. We have examined the effects of the wiggler on the beam optics when it is introduced into SAGA-LS. The distribution of multipole components in the planes perpendicular to the electron orbit, which is deformed by the wiggler fields, have been calculated using magnetic field calculation code RADIA. Then the lattice function and the dynamic aperture of the ring have been calculated by the lattice calculation code SAD. The results show that the tune shift due to the quadrupole component of the wiggler field is as large as to make horizontal beam orbit unstable. The dynamic aperture after the tune correction becomes small by about 20%. These effects due to multipole field are considered to be tolerable for the SAGA-LS.