A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Seeman, J.

Paper Title Page
MOAA003 PEP-II and KEKB Operational Status 276
 
  • J. Seeman
    SLAC, Menlo Park, California
 
  Funding: Work supported by DOE contract DE-AC02-76SF00515.

The present two B-Factories, KEKB at Tsukuba in Japan and PEP-II at SLAC in California, operate at the Upsilon 4S and have reached parameter levels unprecedented for e+e- colliders. They have provided very large data samples for their respective particle detectors, BELLE and BaBar. Luminosities are approaching 1 x 1034/cm2/s and beyond. Beam currents have reached over 2.5 A with 1600 positron bunches spaced by 4 nsec. Continuous injection with the detectors taking data has added significantly to data collection rates. Bunch-by-bunch feedback systems damp strong longitudinal and transverse coupled bunch instabilities. The beam-beam interaction has allowed high tune shift levels even in the presence of parasitic crossing and crossing angle effects. Both B-Factory colliders have significant near term luminosity improvement programs.

 
MOPC006 Simulations and Experiments of Beam-Beam Effects in e+e- Storage Rings 520
 
  • Y. Cai, J. Seeman
    SLAC, Menlo Park, California
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • K. Ohmi, M. Tawada
    KEK, Ibaraki
 
  Funding: Work partially supported by the Department of Energy under Contract No. DE-AC02-76SF00515.

Over the past decade, extensive simulations of beam-beam effects in positron-electron collliders, based on the particle-in-cell method, were developed to explain many complex experimental observations. Recently, such simulations were used to predict the future luminosity performance of e+e- colliders. Some predictions have been proven to be correct in the existing accelerators. In this paper, many effects such as dynamic beta, beam-beam limit, crossing angle, parasitic collisions, betatron spectrum, and beam-beam lifetime, will be reviewed from the viewpoints of both simulation and experiment. Whenever possible, direct comparisons between the predictions of the simulation and the corresponding experimental results will be provided.

 
MPPE058 Virtual Accelerator for Accelerator Optics Improvement 3426
 
  • Y.T. Yan, Y. Cai, F.-J. Decker, S. Ecklund, J. Irwin, J. Seeman, M.K. Sullivan, J.L. Turner, U. Wienands
    SLAC, Menlo Park, California
 
  Funding: Work supported by Department of Energy contract DE-AC02-76SF00515.

Through determination of all quadrupole strengths and sextupole feed-downs by fitting quantities derivable from precision orbit measurement, one can establish a virtual accelerator that matches the real accelerator optics. These quantities (the phase advances, the Green's functions, and the coupling eigen-plane ellipses tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a model-independent analysis (MIA). Instead of trying to identify magnet errors, a limited number of quadrupoles are chosen for optimized strength adjustment to improve the virtual accelerator optics and then applied to the real accelerator accordingly. These processes have been successfully applied to PEP-II rings for beta beating fixes, phase and working tune adjustments, and linear coupling reduction to improve PEP-II luminosity.

 
TPPP024 Experimental Study of Crossing-Angle and Parasitic-Crossing Effects at the PEP-II e+e- Collider 1874
 
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • Y. Cai, J. Seeman, M.K. Sullivan
    SLAC, Menlo Park, California
  • I.V. Narsky
    CALTECH, Pasadena, California
 
  In a series of dedicated accelerator experiments, we have measured the dependence of the PEP-II luminosity performance on small horizontal crossing angles and on the horizontal separation at the first parasitic crossing. The experiment was carried out by varying the IP angle of one of the beams in two different bunch patterns, one with and one without parasitic crossings. The experimental measurements show satisfactory agreement with three-dimensional beam-beam simulations.  
TPPP029 A Preliminary Interaction Region Design for a Super B-Factory 2077
 
  • M.K. Sullivan, M.H. Donald, S. Ecklund, A. Novokhatski, J. Seeman, U. Wienands
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
 
  Funding: work supportted by the Department of Energy under contract number DE-AC03-76SF00515.

The success of the two B-Factories (PEP-II and KEKB) has encouraged us to look at design parameters for a B-Factory with a 30-50 times increase in the luminosity of the present machines (L~1e36). In order to achieve this high luminosity, the beta y* values are reduced to 3-2 mm, the bunch spacing is minimized (0.6-0.3 m) and the bunch currents are increased. Total beam currents range from 5-25 A. The interaction region (IR) of these "SuperB" designs presents special challenges. Synchrotron radiation fans from local bending in shared magnets and from upstream sources pose difficulties due to the high power levels in these fans. High-order-mode(HOM)heating, effects that have been seen in the present B-factories, will become much more pronounced with the very short bunches and high beam currents. Masking the detector beam pipe from synchrotron radiation must take into account effects of HOM power generation. Backgrounds that are a function of the luminosity will become very important. We present an initial design of an IR with a crossing angle of ± 14 mrad and include a discussion of the constraints, requirements and concerns that go into designing an IR for these very high luminosity e+e- machines.

 
TPPP030 Damping Higher Order Modes in the PEP-II B-Factory Vertex Bellows 2131
 
  • S.P. Weathersby, J. Langton, A. Novokhatski, J. Seeman
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC03-76SF00515.

Higher stored currents and shorter bunch lengths are requirements for increasing luminosity in colliding storage rings. As a result, more HOM power is generated in the IP region. This HOM power propagates to sensitive components causing undesirable heating, thus becoming a limiting issue for the PEP-II B-factory. HOM field penetration through RF shielding fingers has been shown to cause heating in bellows structures. To overcome these limitations, a proposal to incorporate ceramic absorbers within the bellows cavity to damp these modes is presented. Results show that the majority of modes of interest are damped, the effectiveness depending on geometrical considerations. An optimal configuration is presented for the PEP-II B-factory IR bellows component utilizing commercial grade ceramics with consideration for heat transfer requirements.

 
TPPP031 A Proposal for a New HOM Absorber in a Straight Section of the PEP-II Low Energy Ring 2173
 
  • S.P. Weathersby, M. Kosovsky, N. Kurita, A. Novokhatski, J. Seeman
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC03-76SF00515.

Attainment of high luminosity in storage ring colliders necessitates increasing stored currents and reducing bunch lengths. Consequently, intense beam fields will scatter more power into higher order modes from beam line sources such as collimators, masks and tapers. This power penetrates into sensitive components such as a bellows, causing undesirable heating and limits machine performance. To overcome this limitation we propose incorporating ceramic absorbers in the vicinity of the bellows to damp beam induced modes while preserving a matched impedance to the beam. This is accomplished with an absorber configuration which damps TE dipole and quadrupole traveling waves while preserving TM monopole propagation. A scattering parameter analysis is presented utilizing properties of commercial grade ceramics and indicates a feasible solution.

 
TPPP032 Proposal for a Multi-Use Test Beam Area in the SLAC B-Line 2221
 
  • P. Emma, L.D. Bentson, R.A. Erickson, H. Fieguth, J. Seeman, A. Seryi
    SLAC, Menlo Park, California
 
  Funding: Work supported by U.S. Department of Energy contract DE-AC02-76SF00515.

With the impending construction of the Linac Coherent Light Source (LCLS) at SLAC, displacing the well-used Final Focus Test Beam (FFTB) area, there is growing interest in developing a new test beam facility, available during LCLS operations and located in the old B-Line tunnel at the end of the linac. The success of the Sub-Picosecond Pulse Source (SPPS) and the desire to preserve this capacity suggests a new beamline with similar or improved electron beam quality, including bunch length compression to 10 microns. Beam availability during LCLS operations requires a new 1.2-km bypass line connecting the 2/3-point of the linac with the B-Line. A second operating mode, with LCLS not in use, involves a trajectory directly from the end of the linac to the B-line. This feature provides the highest beam quality at 30 GeV, and also allows a possible third operational mode by deflecting a few of the very high-brightness 120-Hz, 14-GeV LCLS bunches at low rate (1-10 Hz) into the B-line. Finally, linear collider research can be carried out in a short final focus system at the end of the B-Line, capable of producing a 70-nm rms beam size. We describe a possible design for these systems.

 
TPPP034 Parameters of a Super-B-Factory Design 2333
 
  • J. Seeman, Y. Cai, S. Ecklund, J.D. Fox, S.A. Heifets, N. Li, P.A. McIntosh, A. Novokhatski, M.K. Sullivan, D. Teytelman, U. Wienands
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
 
  Funding: Work supported by DOE contract DE-AC02-76SF00515.

Submitted for the High Luminosity Study Group: Parameters are being studied for a high luminosity e+e- collider operating at the Upsilon 4S that would deliver a luminosity in the range of 7 to 10 x 1035/cm2/s. Particle physics studies dictate that a much higher luminosity collider is needed to answer new key physics questions. A Super-B-Factory with 20 to 100 times the performance of the present PEP-II accelerator would incorporate a higher frequency RF system, lower impedance vacuum chambers, higher power synchrotron radiation absorbers, and stronger bunch-by-bunch feedback systems. Parameter optimizations are discussed.

 
TPPP035 Performance of the PEP-II B-Factory Collider at SLAC 2369
 
  • J. Seeman, J. Browne, Y. Cai, S. Colocho, F.-J. Decker, M.H. Donald, S. Ecklund, R.A. Erickson, A.S. Fisher, J.D. Fox, S.A. Heifets, R.H. Iverson, A. Kulikov, N. Li, A. Novokhatski, M.C. Ross, P. Schuh, T.J. Smith, K.G. Sonnad, M. Stanek, M.K. Sullivan, P. Tenenbaum, D. Teytelman, J.L. Turner, D. Van Winkle, M. Weaver, U. Wienands, M. Woodley, Y.T. Yan, G. Yocky
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • C. Steier, A. Wolski
    LBNL, Berkeley, California
  • G. Wormser
    IPN, Orsay
 
  Funding: Work supported by DOE contract DE-AC02-76SF00515.

For the PEP-II Operation Staff: PEP-II is an asymmetric e+e- collider operating at the Upsilon 4S and has recently set several performance records. The luminosity has reached 9.2 x 1033/cm2/s. PEP-II has delivered an integrated luminosity of 710/pb in one day. It operates in continuous injection mode for both beams boosting the integrated luminosity. The peak positron current has reached 2.55 A in 1588 bunches. The total integrated luminosity since turn on in 1999 has reached 256/fb. This paper reviews the present performance issues of PEP-II and also the planned increase of luminosity in the near future to over 2 x 1034/cm2/s. Upgrade details and plans are discussed.