A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Seaman, A.K.

Paper Title Page
TPPT090 Progress of 2-Cell Cavity Fabrication for Cornell ERL Injector 4248
 
  • R.L. Geng, P. Barnes, M. Liepe, V. Medjidzade, H. Padamsee, A.K. Seaman, J. Sears, V.D. Shemelin, N. Sherwood
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
 
  Five 1300 MHz superconducting niobium cavities are to be used for the injector of Cornell ERL. The beam power requirement (100 kW each cavity) and the need to minimize emittance dilution due to the cavity structure have important impacts to the design and fabrication of these cavities. We plan to use Conflat stainless-steel flanges brazed to niobium tubes of niobium cavities. The first copper prototy cavity has been built and measured. Most parts for the first niobium cavity have been manufactured also. In this report, we will present the progress of the prototyping copper as well as niobium cavities.  
ROAC009 World Record Accelerating Gradient Achieved in a Superconducting Niobium RF Cavity 653
 
  • R.L. Geng, A.K. Seaman, V.D. Shemelin
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • H. Padamsee
    Cornell University, Ithaca, New York
 
  Funding: Work supported by NSF.

On November 16, 2004, an accelerating gradient of 46 MV/m was achieved (CW) in a superconducting niobium cavity with an unloaded quality factor (Q0) over 1·1010 at a temperature of 1.9 K. This represents a world record gradient in a niobium RF resonator. At a reduced temperature of 1.5-1.6 K, an enhanced Q0 was measured, ranging from 7·1010 at 5 MV/m to 2·1010 at 45 MV/m. The 1.3 GHz single-cell cavity has a reduced ratio of Hpk/Eacc, ensured by a reentrant geometry. The maximum peak surface electric and magnetic field exceeded 100 MV/m and 1750 Oe respectively. A soft multipacting barrier (predicted by calculations) was observed near 25 MV/m gradient and was easily processed through. Field emission in the cavity was negligibly small, and the highest field was limited by thermal breakdown. The cavity was built, processed, and tested with LEPP facilities at Cornell University. New techniques included half-cell heat treatment with yttrium for post-purification to RRR = 500, and vertical electropolishing the finished cavity.