A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Schmüser, P.

Paper Title Page
RPAT049 Numerical Studies on the Electro-Optic Sampling of Relativistic Electron Bunches 3070
 
  • S. Casalbuoni, H. Schlarb, B. Schmidt, B. Steffen
    DESY, Hamburg
  • P. Schmüser, A. Winter
    Uni HH, Hamburg
 
  Ultraviolet and X ray free electron lasers require sub-picosecond electron bunches of high charge density. Electro-optic sampling (EOS) is a suitable diagnostic tool for resolving the time structure of these ultrashort bunches. The transient electric field of the relativistic bunch induces a polarization anisotropy in a nonlinear crystal which is sampled by femtosecond laser pulses. In this paper, the EOS process is studied in detailed numerical calculations. The THz and the laser pulses are treated as wave packets which are propagated through the zinc telluride resp. gallium phosphide crystals. The effects of signal broadening and distortion are taken into account. The time resolution is limited by the lowest lattice oscillation frequency which amounts to 5.3 THz in ZnTe and 11 THz in GaP. The shortest bunch length which can be resolved with moderate distortion is about 200 fs (FWHM) in ZnTe and 100 fs in GaP.  
RPAT050 Electro Optic Bunch Length Measurements at the VUV-FEL at DESY 3111
 
  • B. Steffen, S. Casalbuoni, E.-A. Knabbe, H. Schlarb, B. Schmidt
    DESY, Hamburg
  • P. Schmüser, A. Winter
    Uni HH, Hamburg
 
  For the operation of a SASE FEL, the longitudinal bunch length is one of the most critical parameters. At the superconducting linac of the VUV-FEL at DESY, we have installed an electro optic sampling (EOS) experiment to probe the time structure of the electric field of the bunches to better than 100 fs rms. The field-induced birefringence of a ZnTe crystal is detected by a femtosecond laser pulse (TiSa) and the time structure is measured by scanning the relative timing of the electron bunch and the TiSa pulse. A synchronization stability of better than 50 fs between laser and accelerator RF has been achieved. First results on the synchronization measurements and for the bunch length as function of the linac parameters are presented.  
RPPT038 Phase Noise Characteristics of Fiber Lasers as Potential Ultra-Stable Master Oscillators 2521
 
  • A. Winter, P. Schmüser
    Uni HH, Hamburg
  • J. Chen, F.O. Ilday, F.X. Kaertner, J. Kim
    MIT, Cambridge, Massachusetts
  • H. Schlarb
    DESY, Hamburg
 
  Fourth-generation light sources, such as the European X-Ray free electron laser facility (XFEL) require timing signals distributed over distances of the order of kilometers with a timing jitter in the order of femtoseconds. The master clock for the proposed optical distribution system must operate with exceptionally low timing jitter. A promising approach is the use of a mode-locked laser that generates ultrastable pulses which are distributed via timing stabilized fiber links. Candidates for the pulse source are mode-locked Erbium doped fiber lasers, featuring very low high frequency noise. In this paper, we present a study of the phase noise of various fiber lasers in view of their applicability as laser-based master oscillators for femtosecond timing distributions.