A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Sakaki, H.

Paper Title Page
ROPA003 Present Status of the J-PARC Control System 302
 
  • T. Katoh, K.  Furukawa, N. Kamikubota, H. Nakagawa, J.-I. Odagiri, G.S. Shen, Y. Takeuchi, N. Yamamoto, M. Yoshii
    KEK, Ibaraki
  • H. Sakaki, H. Sako, H. Takahashi, F. Tamura, H. Yoshikawa
    JAERI, Ibaraki-ken
 
  Construction of the J-PARC control system is in progress and the present status is reported. The control system is based on EPICS tool-kit used in KEKB and other accelerator control systems at KEK. The control hardware and network system for Linac and RCS(Rapid Cycling Synchrotron) have been installed and software is under development now. The operation of Linac is expected in next year. The test of the first part of the accelerator complex; e.g. ion source, RFQ and the first DTL(20 MeV) were done at KEK site. Development of various software such as device drivers for the new equipment, device support routines, and some application programs for operators were also developed.  
FPAT047 Control System of 3 GeV Rapid Cycling Synchrotron at J-PARC 2968
 
  • H. Takahashi, Y. Kato, M. Kawase, H. Sako
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • Y. Ito
    Total Saport System Corp., Naka-gun, Ibaraki
  • H. Sakaki
    JAERI/LINAC, Ibaraki-ken
  • M. Sugimoto
    Mitsubishi Electric Control Software Corp, Kobe
  • H. Yoshikawa
    JAERI, Ibaraki-ken
 
  Funding: Japan Society for the Promotion of Science (JSPS).

Since the 3GeV RCS produces huge beam power of 1 MW, extreme cares must be taken to design the control system in order to minimize radiation due to beam loss. Another complexity appears in the control system, because each beam bunch of 25 Hz is required to be injected either into the MLF* or into the 50GeV MR.** Therefore, each bunch of 25 Hz must be operated separately, and the data acquisition system must collect synchronized data within each pulse. To achieve these goals, a control system via reflective memory and wave endless recorders has been developed. EPICS is adopted in the control system. Since the number of devices is huge, the management of EPICS records and their configurations require huge amount of time and man power. To reduce this work significantly, a RDB*** for static machine information has been developed. This RDB stores (1) EPICS related information of devices, interfaces, and IOC's**** with a capability to generate EPICS records automatically, and (2) machine geometrical information with a capability to generate lattice files for various simulation applications. The status of the control system focusing on the data acquisition system and the RDB will be presented.

*Material and Life Science Facility. **Main Ring. ***Relational Database. ****Input Output Controller.