A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Rose, J.

Paper Title Page
MPPP036 Collective Effects for NSLS-II
 
  • A. Blednykh, S. Krinsky, B. Podobedov, J. Rose, N.A. Towne, J.-M. Wang
    BNL, Upton, Long Island, New York
 
  NSLS-II is a 3 GeV ultra high brightness storage ring that is planned to succeed the present NSLS rings at Brookhaven. NSLS-II will provide hard X-ray photons from ~20 mini-gap undulators that may significantly contribute to the machine impedance. This, in combination with very high beam phase space density, and low momentum compaction drives a number of coherent instabilities. This paper reviews the most important collective effects for NSLS-II and their implications on the machine design.  
MPPP038 Harmonic Cavity Performance for NSLS-II 2544
 
  • A. Blednykh, S. Krinsky, B. Podobedov, J. Rose, N.A. Towne, J.-M. Wang
    BNL, Upton, Long Island, New York
 
  NSLS-II is a 3 GeV ultra-high brightness storage ring that is planned to succeed the present NSLS rings at Brookhaven. Ultra-low emittance bunch combined with a short bunch length results in the Touschek lifetime of only a few hours, which strongly advocates including harmonic RF in the baseline design of NSLS-II. This paper describes the required harmonic RF parameters, trade-offs between the possible choices and the expected system performance, including the implications on lifetime and instabilities.  
TOAB003 First Results from the DUV-FEL Upgrade at BNL
 
  • X.J. Wang, J.B. Murphy, I.P. Pinayev, G. Rakowsky, J. Rose, T.V. Shaftan, B. Sheehy, J. Skaritka, Z. Wu, L.-H. Yu
    BNL, Upton, Long Island, New York
  • H. Loos
    SLAC, Menlo Park, California
 
  The DUV-FEL at BNL is the world’s only facility dedicated to laser-seeded FEL R&D and its applications. Tremendous progress was made in both HGHG FEL and its applications in the last couple years.*,** In response to the requests of many users to study chemical science at the facility, the DUV-FEL linac was upgraded from 200 to 300 MeV to enable the HGHG FEL to produce 100 uJ pulses of 100 nm light. This will establish the DUV FEL as a premier user facility for ultraviolet radiation and enable state-of-the-art gas phase photochemistry research. The upgraded facility will also make possible key R&D experiments such as higher harmonic HGHG (n>5) that would lay the groundwork for future X-ray FEL based on HGHG. The upgraded HGHG FEL will operate at the 4th harmonic with the seed laser at either 800 nm or 400nm. The increase of the electron beam energy will be accomplished by installing a 5th linac cavity and two 45 MW klystrons. New HGHG modulator and dispersion sections vacuum chambers will be manufactured to accommodate new matching optics and 8th harmonic HGHG. The initial results of the DUV-FEL upgrade and other FEL and accelerator physics R&D opportunities will be discussed.

*L.H. Yu et al., Phy. Rev. Lett. 91, 074801-1 (2003). **W. Li et al., Phy. Rev. Lett. 92, 083002-1(2004).

 
RPAE059 Design of 3 GeV Booster for NSLS-II 3473
 
  • T.V. Shaftan, E.D. Johnson, J.B. Murphy, I.P. Pinayev, J. Rose, X.J. Wang
    BNL, Upton, Long Island, New York
 
  We present preliminary design of full energy booster for NSLS-II. In the paper we analyze single- and multi-bunch modes of the booster operations. The booster lattice consists of 24 TME cells with two dispersion suppressors. Initial design of the magnets, power supply specifications, Eddy current contribution to the booster chromaticity are discussed.  
RPAE056 NSLS II: The Future of the NSLS 3345
 
  • J.B. Murphy, J. Bengtsson, R. Biscardi, A. Blednykh, G.L. Carr, W.R. Casey, S. Chouhan, S.B. Dierker, E. Haas, R. Heese, S. Hulbert, E.D. Johnson, C.C. Kao, S.L. Kramer, S. Krinsky, I.P. Pinayev, S. Pjerov, B. Podobedov, G. Rakowsky, J. Rose, T.V. Shaftan, B. Sheehy, J. Skaritka, N.A. Towne, J.-M. Wang, X.J. Wang, L.-H. Yu
    BNL, Upton, Long Island, New York
 
  Funding: Under Contract with the United States Department of Energy Contract Number DE-AC02-98CH10886

The National Synchrotron Light Source at BNL was the first dedicated light source facility and it has now operated for more than 20 years. During this time the user community has grown to more than 2400 users annually. To insure that this vibrant user community has access to the highest quality photon beams, the NSLS is pursuing the design of a new ultra-high brightness (~10E21) electron storage ring, tailored to the 0.3-20 KeV photon energy range. We present our preliminary design and review the critical accelerator physics design issues.

 
RPAE058 NSLS-II Injection Concept 3408
 
  • T.V. Shaftan, A. Blednykh, S. Chouhan, E.D. Johnson, S.L. Kramer, S. Krinsky, J.B. Murphy, I.P. Pinayev, S. Pjerov, B. Podobedov, G. Rakowsky, J. Rose, T. Tanabe, J.-M. Wang, X.J. Wang, L.-H. Yu
    BNL, Upton, Long Island, New York
 
  Currently the facility upgrade project is under progress at the NSLS (Brookhaven National Laboratory). The goal of NSLS-II is a 3 GeV ultra-low emittance storage ring that will provide three orders of magnitude increase in brightness over the present NSLS X-ray beamlines. The low emittance of the high brightness ring lattice results in quite short lifetimes, which makes operation in top-off injection mode a necessity. The NSLS-II injection system must be able to provide an electron beam at the high repetition rate and with good injection efficiency. In this paper we present a concept of the NSLS-II injection system and discuss conditions and constraints for the injector design. Various injection system parameters are estimated from the point of view of SR user demand.  
RPAT068 Proposed Diagnostics for the NSLS-II 3760
 
  • I.P. Pinayev, S.L. Kramer, J. Rose, T.V. Shaftan
    BNL, Upton, Long Island, New York
 
  Funding: The U.S. Department of Energy under contract No. DE-AC02-98CH10886.

The National Synchrotron Light Source is performing R&D of a new 3 GeV electron storage ring to be used for the facility upgrade. To satisfy the demands for the brightness and stability of the future light source a state-of-the-art diagnostics system is a necessity. We present our preliminary design with focus on the requirements for instrumentation and technical solutions to achieve them.