A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Ries, T.C.

Paper Title Page
TPPT052 Cryogenic, Magnetic and RF Performance of the ISAC-II Medium Beta Cryomodule at TRIUMF 3191
 
  • R.E. Laxdal, K. Fong, A.K. Mitra, T.C. Ries, I. Sekachev, G. Stanford, V. Zviagintsev
    TRIUMF, Vancouver
 
  The medium beta section of the ISAC-II Heavy Ion Accelerator consists of five cryomodules each containing four quarter wave resonators and one superconducting solenoid. The first cryomodule has been designed, assembled and cold tested at TRIUMF. The cryomodule vacuum space shares the cavity vacuum and contains a mu-metal shield, an LN2 cooled, copper thermal shield, plus the cold mass and support system. The bulk niobium cavities are fitted with an LN2 cooled coupling loop fed in series from the side thermal shield and a tuner plate coupled to an out-of-vacuum linear servo motor. All cavities have been locked at the ISAC-II frequency and gradient for extended periods. This paper will report the cryogenic and rf test results from the three cold tests. Of note are measurements of the magnetic field in the cryomodule and estimations of changes in the magnetic field during the test due to trapped flux in the solenoid and magnetization of the environment.  
WPAE008 Redesign of a Low Energy Probe Head 1105
 
  • Y.-N. Rao, G.H. Mackenzie, T.C. Ries
    TRIUMF, Vancouver
 
  The present situation of the low energy probe L·102 in TRIUMF cyctron is that the thickness of finger 5 is uniform in the radial direction and its weight which amounts to ~447 g is affecting its re-circulating ball mechanism and causing it to fall below the median plane over its range of movement (13.890 to 161.515 inch). We first made simulations to determine the optimum thickness of the probe head vs the radial length so as to reduce its weight. And then, we compared the simulation results with experimental measurements made. Finally, we calculated the temperature rise caused by the beam power dumped on the probe, and figured out the maximum beam current that can be dumped on the finger.