A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Reiche, S.

Paper Title Page
TPAE044 Terahertz IFEL/FEL Microbunching for Plasma Beatwave Accelerators 2812
 
  • C. Sung, C.E. Clayton, C. Joshi, P. Musumeci, C. Pellegrini, J.E. Ralph, S. Reiche, J.B. Rosenzweig, S. Tochitsky
    UCLA, Los Angeles, California
 
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-FG03-92ER40727.

In order to obtain monoenergetic acceleration of electrons, phase-locked injection using electron microbunches shorter than the accelerating structure is necessary. For a laser-driven plasma beatwave accelerator experiment, we propose to microbunch the electrons by interaction with terahertz (THz) radiation in an undulator via two mechanisms– free electron laser (FEL) and inverse free electron laser (IFEL). Since the high power FIR radiation will be generated via difference frequency mixing in GaAs by the same CO2 beatwave used to drive the plasma wave, electrons could be phase-locked and pre-bunched into a series of microbunches separated with the same periodicity. Here we examine the criteria for undulator design and present simulation results for both IFEL and FEL approaches. Using different CO2 laser lines, electrons can be microbunched with different periodicity 300 – 100 mm suitable for injection into plasma densities in the range 1016 – 1017 cm-3, respectively. The requirement on the THz radiation power and the electron beam qualities are also discussed.

 
TOAB004 An Optimized Low-Charge Configuration of the Linac Coherent Light Source 344
 
  • P. Emma, Z. Huang, C. Limborg-Deprey, J. Wu
    SLAC, Menlo Park, California
  • W.M. Fawley, M.S. Zolotorev
    LBNL, Berkeley, California
  • S. Reiche
    UCLA, Los Angeles, California
 
  Funding: Work supported by U.S. Department of Energy contract DE-AC02-76SF00515.

The Linac Coherent Light Source (LCLS) is an x-ray free-electron laser (FEL) project based on the SLAC linac. The nominal parameter set is founded on a 1-nC bunch charge and normalized emittance of about 1 micron. The most challenging issues, such as emittance generation, wakefields, and coherent synchrotron radiation (CSR), are associated with the high bunch charge. In the LCLS in particular, with its strong linac wakefields, the bunch compression process produces sharp temporal horns at the head and tail of the bunch with degraded local emittance, effectively wasting much of the charge. The sharp horns intensify CSR in the bends and further drive a strong resistive-wall wakefield in the long FEL undulator. Although these issues are not insurmountable, they suggest a lower bunch charge may be more suitable. This study uses a 0.2-nC bunch charge and 0.85-micron emittance with only 30 A of peak current in the injector, producing the same FEL saturation length. The resulting performance is more stable, has negligible resistive-wall wakefield, greatly reduced CSR effects, and no transverse wakefield emittance dilution in the linac, with no change to the baseline engineering design.

 
WPAP011 SPARC Working Point Optimization for a Bunch with Gaussian Temporal Profile 1248
 
  • M. Boscolo, M. Ferrario, V. Fusco, M.  Migliorati
    INFN/LNF, Frascati (Roma)
  • S. Reiche
    UCLA, Los Angeles, California
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
 
  We present the optimization of the working point for the SPARC photoinjector with a Gaussian temporal profile. The implications of a Gaussian temporal profile are discussed here for the standard working conditions and for the RF compressor case in comparison with the nominal working point performances of a 10ps flat top pulse with rise time of 1ps. Comparisons with the upgraded version of the HOMDYN code including arbitrary bunch temporal profiles are also reported. Advantages and drawbacks of the Gaussian and flat top pulse shapes are discussed. For the standard working point, it is shown that the two cases provide the same saturation length and average power, but the higher current in the beam core of the Gaussian pulse gives a higher peak radiation power. As the laser pulse shape could be Gaussian at the first stage of the SPARC operation, it is clear the importance of these simulation results.  
RPAE021 Feasibility Study of a Laser Beat-Wave Seeded THz FEL at the Neptune Laboratory 1721
 
  • S. Reiche, C. Joshi, C. Pellegrini, J.B. Rosenzweig, S. Tochitsky
    UCLA, Los Angeles, California
  • G. Shvets
    The University of Texas at Austin, Austin, Texas
 
  Funding: The work was supported by the DOE Contract No. DE-FG03-92ER40727.

Free-Electron Laser in the THz range can be used to generate high output power radiation or to modulate the electron beam longitudinally on the radiation wavelength scale. Microbunching on the scale of 1-5 THz is of particular importance for potential phase-locking of a modulated electron beam to a laser-driven plasma accelerating structure. However the lack of a seeding source for the FEL at this spectral range limits operation to a SASE FEL only, which denies a subpicosecond synchronization of the current modulation or radiation with an external laser source. One possibility to overcome this problem is to seed the FEL with two external laser beams, which difference (beat-wave) frequency is matched to the resonant FEL frequency in the THz range. In this presentation we study feasibility of an experiment on laser beat-wave injection in the THz FEL considered at the UCLA Neptune Laboratory, where both a high brightness photoinjector and a two-wavelength, TW-class CO2 laser system exist. By incorporating the energy modulation of the electron beam by the ponderomotive force of the beat-wave in a modified version of the time-dependent FEL code Genesis 1.3, the performance of a FEL at Neptune is simulated and analyzed.

 
RPPT035 Optimization of the LCLS X-Rray FEL Output Performance in the Presence of Strong Undulator Wakefields 2396
 
  • S. Reiche
    UCLA, Los Angeles, California
  • K.L.F. Bane, P. Emma, Z. Huang, H.-D. Nuhn, G.V. Stupakov
    SLAC, Menlo Park, California
  • W.M. Fawley
    LBNL, Berkeley, California
 
  Funding: The work was supported by the DOE Contract No. DE-AC02-76SF00515.

The Linac Coherent Light Source (LCLS) Free-Electron Laser will operate in the wavelength range of 1.5 to 15 Angstroms. Energy loss due to wakefields within the long undulator can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber material (e.g. Cu) and its radius. To study the expected performance in the presence of these wakefields, we make a series of "start-to-end" simulations with tracking codes PARMELA and ELEGANT and time-dependent FEL simulation codes Genesis 1.3 and Ginger. We discuss the impact of the wakefield on output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation obtained with a slight z dependent taper in the undulator field. We compare these results to those obtained by decreasing the bunch charge or increasing the vacuum chamber radius. We also compare our results to those predicted in concurrent analytical work.

 
RPPT031 Recent Results from and Future Plans for the VISA II SASE FEL 2167
 
  • G. Andonian, R.B. Agustsson, P. Frigola, A.Y. Murokh, C. Pellegrini, S. Reiche, J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
  • M. Babzien, I. Ben-Zvi, V. Litvinenko, V. Yakimenko
    BNL, Upton, Long Island, New York
  • I. Boscolo, S. Cialdi, A.F. Flacco
    INFN-Milano, Milano
  • M. Ferrario, L. Palumbo, C. Vicario
    INFN/LNF, Frascati (Roma)
  • J.Y. Huang
    PAL, Pohang, Kyungbuk
 
  As the promise of X-ray Free Electron Lasers (FEL) comes close to realization, the creation and diagnosis of ultra-short pulses is of great relevance in the SASE FEL (Self-Amplified Spontaneous Emission) community. The VISA II (Visible to Infrared SASE Amplifier) experiment entails the use of a chirped electron beam to drive a high gain SASE FEL at the Accelerator Test Facility (ATF) in Brookhaven National Labs (BNL). The resulting ultra-short pulses will be diagnosed using an advanced FROG (Frequency Resolved Optical Gating) technique, as well as a double differential spectrum (angle/wavelength) diagnostic. Implementation of sextupole corrections to the longitudinal aberrations affecting the high energy-spread chirped beam during transport to the VISA undulator is studied. Start-to-end simulations, including radiation diagnostics, are discussed. Initial experimental results involving a highly chirped beam transported without sextupole correction, the resulting high gain lasing, and computational analysis are briefly reported.