A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Raubenheimer, T.O.

Paper Title Page
ROPB001 Suppressing Electron Cloud in Future Linear Colliders 24
 
  • M.T.F. Pivi, R.E. Kirby, T.O. Raubenheimer
    SLAC, Menlo Park, California
  • F. Le Pimpec
    PSI, Villigen
 
  Funding: Work supported by the U.S. DOE under contract DE-AC02- 76SF00515.

Any accelerator circulating positively charged beams can suffer from a build-up of an electron cloud in the beam pipe. The cloud develops through ionization of residual gases, synchrotron radiation and secondary electron emission and, when severe, can cause instability, emittance blow-up or loss of the circulating beam. The electron cloud is potentially a limiting effect for both the Large Hadron Collider (LHC) and the International Linear Collider (ILC). For the ILC positron damping ring, the development of the electron cloud must be suppressed. This paper presents the various effects of the electron cloud and evaluates their significance. It also discusses the state-of-the-art of the ongoing international R&D program to study potential remedies to reduce the secondary electron yield to acceptably low levels.

 
RPPP034 Multi-Stage Bunch Compressors for the International Linear Collider 2357
 
  • P. Tenenbaum, T.O. Raubenheimer
    SLAC, Menlo Park, California
  • A. Wolski
    LBNL, Berkeley, California
 
  We present bunch compressor designs for the International Linear Collider (ILC) which achieve a reduction in RMS bunch length from 6 mm to 0.3 mm via multiple stages of compression, with stages of acceleration inserted between the stages of compression. The key advantage of multi-stage compression is that the maximum RMS energy spread is reduced to approximately 1%, compared to over 3% for a single-stage design. Analytic and simulation studies of the multi-stage bunch compressors are presented, along with performance comparisons to a single-stage system. Parameters for extending the systems to a larger total compression factor are discussed.  
RPPP038 Electron-Cloud Effects in Transport Lines of a Normal Conducting Linear Collider 2527
 
  • J. Wu, M.T.F. Pivi, T.O. Raubenheimer, A. Seryi
    SLAC, Menlo Park, California
 
  Funding: Work is supported by the U.S. Department of Energy under contract DE-AC02-76SF00515.

In the transport lines of a normal conducting linear collider, the long positron bunch train can generate an electron cloud which can then amplify intra-train offsets. This is a transient effect which is similar to but different from the electron-cloud driven coupled bunch instabilities in a positron storage ring. In this paper, we study this phenomenon both analytically and via numerical simulation. Some criterion on the critical cloud density with respect to given collider parameters is discussed.

 
RPPP045 Single-Bunch Instability Driven by the Electron Cloud Effect in the Positron Damping Ring of the International Linear Collider 2884
 
  • M.T.F. Pivi, T.O. Raubenheimer
    SLAC, Menlo Park, California
  • A.F. Ghalam
    USC, Los Angeles, California
  • K.C. Harkay
    ANL, Argonne, Illinois
  • K. Ohmi
    KEK, Ibaraki
  • R. Wanzenberg
    DESY, Hamburg
  • A. Wolski
    LBNL, Berkeley, California
  • F. Zimmermann
    CERN, Geneva
 
  Funding: Work supported by the U.S. DOE under contracts DE-AC02-76SF00515.

With the recommendation that the future International Linear Collider (ILC) should be based on superconducting technology, there is considerable interest in exploring alternate designs for the damping rings (DR). The TESLA design was 17 km in circumference with a "dog-bone" configuration. Two other smaller designs have been proposed that are 6 km and 3 km in length. In the smaller rings, collective effects may impose the main limitations. In particular for the positron damping ring, an electron cloud may be produced by ionization of residual gas or photoelectrons and increase through the secondary emission process. The build-up and development of an electron cloud is more severe with the higher average beam current in the shorter designs. In this paper, we present recent computer simulation results for the electron cloud build-up and instability thresholds for the various DR configurations.

 
FPAP017 Luminosity Optimization With Offset, Crossing Angle, and Distortion 1541
 
  • J. Wu, T.O. Raubenheimer
    SLAC, Menlo Park, California
 
  Funding: Work is supported by the U.S. Department of Energy under contract DE-AC02-76SF00515.

In a linear collider, sources of beam jitter due to kicker noise, quadrupole vibration and long-range transverse wakefields will lead to beam offsets and tilts at the Intersection Point (IP). In addition, sources of emittance dilution such as short-range transverse wakefields or dispersive errors will lead to internal beam distortions. When the IP disruption parameter is large, these beam imperfections will be amplified by a single bunch kink instability which will lead to luminosity loss. In this paper, we study the luminosity loss and then the optimization required to cancel the luminosity loss first analytically and then with simulation.

 
FPAP018 Luminosity Loss Due to Beam Distortion and the Beam-Beam Instability 1586
 
  • J. Wu, A. Chao, T.O. Raubenheimer, A. Seryi
    SLAC, Menlo Park, California
  • C.K. Sramek
    Rice University, Houston, Texas
 
  Funding: Work is supported by the U.S. Department of Energy under contract DE-AC02-76SF00515.

In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ‘banana effect'). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

 
RPPP003 Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider 874
 
  • H. Hayano, S. Araki, H. Hayano, Y. Higashi, Y. Honda, K.-I. Kanazawa, K. Kubo, T. Kume, M. Kuriki, S. Kuroda, M. Masuzawa, T. Naito, T. Okugi, R. Sugahara, T. Tauchi, N. Terunuma, N. Toge, J.U. Urakawa, V.V. Vogel, H. Yamaoka, K. Yokoya
    KEK, Ibaraki
  • I.V. Agapov, G.A. Blair, G.E. Boorman, J. Carter, C.D. Driouichi, M.T. Price
    Royal Holloway, University of London, Surrey
  • D.A.-K. Angal-Kalinin, R. Appleby, J.K. Jones, A. Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Bambade
    LAL, Orsay
  • K.L.F. Bane, A. Brachmann, T.M. Himel, T.W. Markiewicz, J. Nelson, N. Phinney, M.T.F. Pivi, T.O. Raubenheimer, M.C. Ross, R.E. Ruland, A. Seryi, C.M. Spencer, P. Tenenbaum, M. Woodley
    SLAC, Menlo Park, California
  • S.T. Boogert, A. Liapine, S. Malton
    UCL, London
  • H.-H. Braun, D. Schulte, F. Zimmermann
    CERN, Geneva
  • P. Burrows, G.B. Christian, S. Molloy, G.R. White
    Queen Mary University of London, London
  • J.Y. Choi, J.Y. Huang, H.-S. Kang, E.-S. Kim, S.H. Kim, I.S. Ko
    PAL, Pohang, Kyungbuk
  • S. Danagoulian
    North Carolina A&T State University, Greensboro, North Carolina
  • N. Delerue, D.F. Howell, A. Reichold, D. Urner
    OXFORDphysics, Oxford, Oxon
  • J. Gao, W. Liu, G. Pei, J.Q. Wang
    IHEP Beijing, Beijing
  • B.I. Grishanov, P.L. Logachev, F.V. Podgorny, V.I. Telnov
    BINP SB RAS, Novosibirsk
  • J.G. Gronberg
    LLNL, Livermore, California
  • Y. Iwashita, T. Mihara
    Kyoto ICR, Uji, Kyoto
  • M. Kumada
    NIRS, Chiba-shi
  • S. Mtingwa
    North Carolina University, Chapel Hill, North Carolina
  • O. Napoly, J. Payet
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • T.S. Sanuki, T.S. Suehara
    University of Tokyo, Tokyo
  • T. Takahashi
    Hiroshima University, Higashi-Hiroshima
  • E.T. Torrence
    University of Oregon, Eugene, Oregon
  • N.J. Walker
    DESY, Hamburg
 
  The realization of the International Linear Collider (ILC) will require the ability to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittancies are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 35nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists.  
RPPP036 A Test Facility for the International Linear Collider at SLAC End Station A for Prototypes of Beam Delivery and IR Components 2461
 
  • M. Woods, R.A. Erickson, J.C. Frisch, C. Hast, R.K. Jobe, L. Keller, T.W. Markiewicz, T.V.M. Maruyama, D.J. McCormick, J. Nelson, N. Phinney, T.O. Raubenheimer, M.C. Ross, A. Seryi, S. Smith, Z. Szalata, P. Tenenbaum, M. Woodley
    SLAC, Menlo Park, California
  • D.A.-K. Angal-Kalinin, C.D. Beard, F.J. Jackson, A. Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Arnold
    University of Massachusetts, Amherst
  • D. Bailey
    ,
  • R.J. Barlow, G.Yu. Kourevlev, A. Mercer
    UMAN, Manchester
  • S.T. Boogert, A. Liapine, S. Malton, D.J. Miller, M.W. Wing
    UCL, London
  • P. Burrows, G.B. Christian, C.C. Clarke, A.F. Hartin, S. Molloy, G.R. White
    Queen Mary University of London, London
  • D. Burton, N. Shales, J. Smith, A. Sopczak, R. Tucker
    Microwave Research Group, Lancaster University, Lancaster
  • D. Cussans
    University of Bristol, Bristol
  • C. Densham, J. Greenhalgh
    CCLRC/DL, Daresbury, Warrington, Cheshire
  • M.H. Hildreth
    Notre Dame University, Notre Dame, Iowa
  • Y.K. Kolomensky
    UCB, Berkeley, California
  • W.F.O. Müller, T. Weiland
    TEMF, Darmstadt
  • N. Sinev, E.T. Torrence
    University of Oregon, Eugene, Oregon
  • M.S. Slater, M.T. Thomson, D.R. Ward
    University of Cambridge, Cambridge
  • Y. Sugimoto
    KEK, Ibaraki
  • S.W. Walston
    LLNL, Livermore, California
  • N.K. Watson
    Birmingham University, Birmingham
  • I. Zagorodnov
    DESY, Hamburg
  • F. Zimmermann
    CERN, Geneva
 
  Funding: U.S. Department of Energy.

The SLAC Linac can deliver damped bunches with ILC parameters for bunch charge and bunch length to End Station A (ESA). A 10Hz beam at 28.5 GeV energy can be delivered to ESA, parasitic with PEP-II operation. During the engineering design phase for the ILC over the next 5 years, we plan to use this facility to prototype and test key components of the Beam Delivery System (BDS) and Interaction Region (IR). We discuss our plans for this ILC Test Facility and preparations for carrying out experiments related to Collimator Wakefields, Materials Damage Tests and Energy Spectrometers. We also plan an IR Mockup of the region within 5 meters of the ILC Interaction Point to investigate effects from backgrounds and beam rf higher-order modes (HOMs).