A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Rago, E.

Paper Title Page
WPAT043 Overview of the RF Systems for LCLS 2753
 
  • P.A. McIntosh, R. Akre, R.F. Boyce, P. Emma, S. Hill, E. Rago
    SLAC, Menlo Park, California
 
  Funding: Work supported by Department of Energy contract DE-AC03-76SF00515.

The Linac Coherent Light Source (LCLS) at SLAC, when it becomes operational in 2009, will provide its user community with an X-ray source many orders of magnitude brighter than anything available in the world at that time. The electron beam acceleration will be provided by existing and new RF systems capable of maintaining the amplitude and phase stability of each bunch to extremely tight tolerances. RF feedback control of the various RF systems will be fundamental in ensuring the beam arrives at the LCLS undulator at precisely the required energy and phase. This paper details the requirements for RF stability for the various LCLS RF systems and also highlights proposals for how these injector and Linac RF systems can meet these constraints.

 
WPAT044 Realization of an X-Band RF System for LCLS 2801
 
  • P.A. McIntosh, R. Akre, J. Brooks, P. Emma, E. Rago
    SLAC, Menlo Park, California
 
  Funding: Work supported by Department of Energy contract DE-AC03-76SF00515.

A single X-band (11.424 GHz) accelerating structure is to be incorporated in the LCLS Linac design to linearize the energy-time correlation (or gradient) across each bunch, features which originate in the preceding accelerating structures (L0 and L1). This harmonic RF system will operate near the negative RF crest to decelerate the beam, reducing these non-linear components of the correlation, providing a more efficient compression in the downstream bunch compressor chicanes (BC1 and BC2). These non-linear correlation components, if allowed to grow, would lead to Coherent Synchrotron Radiation (CSR) instabilities in the chicanes, effectively destroying the coherence of the photon radiation in the main LCLS undulator. The many years devoted at SLAC in the development of X-band RF components for the NLC/JLC linear collider project, has enabled the technical and financial realization of such an RF system for LCLS. This paper details the requirements for the X-band system and the proposed scheme planned for achieving those requirements.