A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Pichoff, N.

Paper Title Page
TPAT047 A Space Charge Compensation Study of Low Energy Hydrogen Ion Beams 2947
 
  • A. BenIsmail, R. Duperrier, D. Uriot
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • N. Pichoff
    CEA/DAM, Bruyères-le-Châtel
 
  Funding: Work supported by the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395).

High-power accelerators are being studied for several projects including accelerator driven neutron or neutrino sources. The low energy part of these facilities has to be carefully optimized to match the beam requirements of the higher energy parts. The complexity of high intensity beam dynamics in the low energy line is essentially due to the non-linear space charge effects. The PIC code CARTAGO* has been developed in order to simulate the beam transport at low energy including the temporal evolution effects of the space charge compensation. This paper relates the structure and the numerical methods of a 2D (r,z) new version of the code. The effects of the longitudinal space charge, the image charge and external 2D (r,z) magnetic field were included. The results of H+ and H- beam transports using solenoid lenses are discussed. Space charge compensation degrees are given for each studied cases.

*A. Ben Ismail et al., in Space Charge Compensation in Low Energy Proton Beams, proceeding of the International Linear Accelerator Conference, Lübeck, 2004.

 
RPPE027 High Intensity High Energy E-Beam Interacting with a Thin Solid State Target: First Results at AIRIX 1982
 
  • M. Caron, F. Cartier, D.C. Collignon, L.H. Hourdin, E. Merle, M. Mouillet, C. Noel, D.P. Paradis, O.P. Pierret
    CEA, Pontfaverger-Moronvilliers
  • O. Mouton, N. Pichoff
    CEA/DAM, Bruyères-le-Châtel
 
  Funding: CEA, Polygone d’Expérimentation de Morronvilliers, LEXA F-51 475 Pontfaverger (France).

AIRIX is a 2 kA, 20 MeV, 60 ns linear accelerator dedicated to X-ray flash radiography. During a regular running phase, the primary electron beam is accelerated to and focused on a high atomic number target in order to generate X-rays by brembtrahlung mainly. The huge energy density deposited into the material is such that temperature rises up to 15000°K and that clusters and particles are violently ejected from the surface. In that mechanism, the backward emission speed can reach 5 km.s-1 and the debris can gradually accumulate and subsequently contaminate some sensitive parts of the machine. In order to protect the whole accelerating line from the detrimental effect of back-ejected particles, we have investigated the technical feasibility of a thin foil implementation upstream the X-ray converter.