A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Phillips, H.L.

Paper Title Page
TPPT029 Fabrication of the Prototype 201.25 MHz Cavity for a Muon Ionization Cooling Experiment 2080
 
  • R.A. Rimmer, S. Manning, R. Manus, H.L. Phillips, M. Stirbet, K. Worland, G. Wu
    Jefferson Lab, Newport News, Virginia
  • R.A. Hafley, R.E. Martin, K.M. Taminger
    NASA Langley, Hampton, Virginia
  • D. Li, R.A. MacGill, J.W.  Staples, S.P. Virostek, M.S. Zisman
    LBNL, Berkeley, California
  • M. Reep, D.J. Summers
    UMiss, University, Mississippi
 
  Funding: This manuscript has been authored by SURA, Inc. under DoE Contract No. DE-AC05-84ER-40150, LBNL contract No. DE-AC03-76SF00098 and NASA contract IA1-533 subagreement #2

We describe the fabrication and assembly of the first prototype 201.25 MHz copper cavity for the muon ionization cooling experiment (MICE). This cavity was developed by the US MUCOOL collaboration and will be tested in the new Muon Test Area at Fermilab. We outline the component and subassembly fabrication steps and the various metal forming and joining methods used to produce the final cavity shape. These include spinning, brazing, TIG welding, electron beam welding, electron beam annealing and deep drawing. Assembly of the loop power coupler will also be described. Final acceptance test results are included. Some of the methods developed for this cavity are novel and offer significant cost savings compared to conventional construction methods.

 
TPPT082 High Thermal Conductivity Cryogenic RF Feedthroughs for Higher Order Mode Couplers 4108
 
  • C.E. Reece, E. Daly, T. Elliott, J.P. Ozelis, H.L. Phillips, T.M. Rothgeb, K. Wilson, G. Wu
    Jefferson Lab, Newport News, Virginia
 
  Funding: This manuscript has been authorized by SURA, Inc. under Contract No. DE-AC05-84ER-40150 with the U.S. Department of Energy.

The use of higher-order-mode (HOM) pickup probes in the presence of significant fundamental rf fields can present a thermal challenge for cw or high average power SRF cavity applications. The electric field probes on the HOM-damping couplers on the JLab "High Gradient" and "Low Loss" seven-cell cavities for the CEBAF upgrade are exposed to approximately 10% of the peak magnetic field in the cavity. To avoid significant dissipative losses, these probes must remain superconducting during operation. Typical cryogenic rf feedthroughs provide a poor thermal conduction path for the probes, and provide inadequate stabilization. We have developed solutions that meet the requirements, providing a direct thermal path from the niobium probe, thorough single-crystal sapphire, to bulk copper which can be thermally stationed (or heat sunk). Designs, electromagnetic and thermal analyses, and performance data will be presented.

 
TPPT084 Surface Study of Nb/Cu Films for Cavity Deposition by ECR Plasma 4153
 
  • A.T. Wu, R.C. Ike, H.L. Phillips, A-M. Valente, H. Wang, G. Wu
    Jefferson Lab, Newport News, Virginia
 
  Funding: This manuscript has been authorized by SURA, Inc. under Contract No. DE-AC05-84ER-40150 with the U.S. Department of Energy.

Deposition of thin niobium (Nb) films on copper (Cu) cavities, using an electron cyclotron resonance (ECR) plasma appears to be an attractive alternative technique for fabricating superconducting radio frequency cavities to be used in particle accelerators. The performance of these Nb/Cu cavities is expected to depend on the surface characteristics of the Nb films. In this paper, we report on an investigation of the influence of deposition energy on surface morphology, microstructure, and chemical composition of Nb films deposited on small Cu disks employing a metallographic optical microscope, a 3-D profilometer, a scanning electron microscope, and a dynamic secondary ion mass spectrometer. The results will be compared with those obtained on Nb surfaces treated by buffered chemical polishing, electropolishing, and buffered electropolishing. Possible implications from this study for Nb deposition on real Cu cavities will be discussed.

 
TPPT085 Niobium Thin Film Coating on a 500-MHz Copper Cavity by Plasma Deposition 4167
 
  • H. Wang, H.L. Phillips, R.A. Rimmer, A-M. Valente, A.T. Wu, G. Wu
    Jefferson Lab, Newport News, Virginia
 
  Funding: This work was supported by DOE contract DE-AC05-84ER40150 Modification No. M175, under which the Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility.

A system for the deposition, using an ECR plasma source, of a thin film of niobium inside a copper cavity for superconducting accelerator applications has been designed and is being constructed. The system uses a 500-MHz copper cavity as the substrate and the vacuum chamber. The ECR plasma will be created to produce direct niobium ion deposition. The central cylindrical grid is biased to realize the energy controlled deposition. This report describes the design of several subcomponents including the vacuum chamber, RF supply, biasing grid and magnet coils. Operational parameters are compared between a working small-sample deposition system and this system. Initial plasma simulation also suggested that plasma ignition in this cavity system is feasible.

 
TPAP043 Electron Cooling of RHIC 2741
 
  • I. Ben-Zvi, D.S. Barton, D.B. Beavis, M. Blaskiewicz, J.M. Brennan, A. Burrill, R. Calaga, P. Cameron, X.Y. Chang, R. Connolly, Yu.I. Eidelman, A.V. Fedotov, W. Fischer, D.M. Gassner, H. Hahn, M. Harrison, A. Hershcovitch, H.-C. Hseuh, A.K. Jain, P.D.J. Johnson, D. Kayran, J. Kewisch, R.F. Lambiase, V. Litvinenko, W.W. MacKay, G.J. Mahler, N. Malitsky, G.T. McIntyre, W. Meng, K.A.M. Mirabella, C. Montag, T.C.N. Nehring, T. Nicoletti, B. Oerter, G. Parzen, D. Pate, J. Rank, T. Rao, T. Roser, T. Russo, J. Scaduto, K. Smith, D. Trbojevic, G. Wang, J. Wei, N.W.W. Williams, K.-C. Wu, V. Yakimenko, A. Zaltsman, Y. Zhao
    BNL, Upton, Long Island, New York
  • D.T. Abell, D.L. Bruhwiler
    Tech-X, Boulder, Colorado
  • H. Bluem, A. Burger, M.D. Cole, A.J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A.M.M. Todd
    AES, Princeton, New Jersey
  • A.V. Burov, S. Nagaitsev
    Fermilab, Batavia, Illinois
  • J.R. Delayen, Y.S. Derbenev, L. W. Funk, P. Kneisel, L. Merminga, H.L. Phillips, J.P. Preble
    Jefferson Lab, Newport News, Virginia
  • I. Koop, V.V. Parkhomchuk, Y.M. Shatunov, A.N. Skrinsky
    BINP SB RAS, Novosibirsk
  • I.N. Meshkov, A.O. Sidorin, A.V. Smirnov, G.V. Troubnikov
    JINR, Dubna, Moscow Region
  • J.S. Sekutowicz
    DESY, Hamburg
 
  We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.agsrhichome.bnl.gov/eCool/.

Under contract with the U.S. Department of Energy, Contract Number DE-AC02-98CH10886.

 
WPAP033 State-of-the-Art Electron Guns and Injector Designs for Energy Recovery Linacs (ERL) 2292
 
  • A.M.M. Todd, A. Ambrosio, H. Bluem, V. Christina, M.D. Cole, M. Falletta, D. Holmes, E. Peterson, J. Rathke, T. Schultheiss, R. Wong
    AES, Medford, NY
  • I. Ben-Zvi, A. Burrill, R. Calaga, P. Cameron, X.Y. Chang, H. Hahn, D. Kayran, J. Kewisch, V. Litvinenko, G.T. McIntyre, T. Nicoletti, J. Rank, T. Rao, J. Scaduto, K.-C. Wu, A. Zaltsman, Y. Zhao
    BNL, Upton, Long Island, New York
  • S.V. Benson, E. Daly, D. Douglas, H.F.D. Dylla, L. W. Funk, C. Hernandez-Garcia, J. Hogan, P. Kneisel, J. Mammosser, G. Neil, H.L. Phillips, J.P. Preble, R.A. Rimmer, C.H. Rode, T. Siggins, T. Whitlach, M. Wiseman
    Jefferson Lab, Newport News, Virginia
  • I.E. Campisi
    ORNL, Oak Ridge, Tennessee
  • P. Colestock, J.P. Kelley, S.S. Kurennoy, D.C. Nguyen, W. Reass, D. Rees, S.J. Russell, D.L. Schrage, R.L. Wood
    LANL, Los Alamos, New Mexico
  • D. Janssen
    FZR, Dresden
  • J.W. Lewellen
    ANL, Argonne, Illinois
  • J.S. Sekutowicz
    DESY, Hamburg
  • L.M. Young
    TechSource, Santa Fe, New Mexico
 
  Funding: This work is supported by NAVSEA, NSWC Crane, the Office of Naval Research, the DOD Joint Technology Office and by the U.S. DOE.

A key technology issue of ERL devices for high-power free-electron laser (FEL) and 4th generation light sources is the demonstration of reliable, high-brightness, high-power injector operation. Ongoing programs that target up to 1 Ampere injector performance at emittance values consistent with the requirements of these applications are described. We consider that there are three possible approaches that could deliver the required performance. The first is a DC photocathode gun and superconducting RF (SRF) booster cryomodule. Such a 750 MHz device is being integrated and will be tested up to 100 mA at the Thomas Jefferson National Accelerator Facility beginning in 2007. The second approach is a high-current normal-conducting RF photoinjector. A 700 MHz gun will undergo thermal test in 2006 at the Los Alamos National Laboratory, which, if successful, when equipped with a suitable cathode, would be capable of 1 Ampere operation. The last option is an SRF gun. A half-cell 703 MHz SRF gun capable of delivering 1.0 Ampere will be tested to 0.5 Ampere at the Brookhaven National Laboratory in 2006. The fabrication status, schedule and projected performance for each of these state-of-the-art injector programs will be presented.

 
RPPE009 Extremely High Current, High-Brightness Energy Recovery Linac 1150
 
  • I. Ben-Zvi, D.S. Barton, D.B. Beavis, M. Blaskiewicz, J.M. Brennan, A. Burrill, R. Calaga, P. Cameron, X.Y. Chang, R. Connolly, D.M. Gassner, J.G. Grimes, H. Hahn, A. Hershcovitch, H.-C. Hseuh, P.D.J. Johnson, D. Kayran, J. Kewisch, R.F. Lambiase, V. Litvinenko, G.T. McIntyre, W. Meng, T.C.N. Nehring, T. Nicoletti, B. Oerter, D. Pate, J. Rank, T. Rao, T. Roser, T. Russo, J. Scaduto, Z. Segalov, K. Smith, N.W.W. Williams, K.-C. Wu, V. Yakimenko, K. Yip, A. Zaltsman, Y. Zhao
    BNL, Upton, Long Island, New York
  • H. Bluem, A. Burger, M.D. Cole, A.J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A.M.M. Todd
    AES, Princeton, New Jersey
  • J.R. Delayen, L. W. Funk, P. Kneisel, H.L. Phillips, J.P. Preble
    Jefferson Lab, Newport News, Virginia
 
  Funding: Under contract with the U.S. Department of Energy, U.S. DOD Office of Naval Research and Joint Technology Office.

Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL’s Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

 
RPPT032 High Current Energy Recovery Linac at BNL 2242
 
  • V. Litvinenko, D.B. Beavis, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, A. Burrill, R. Calaga, P. Cameron, X.Y. Chang, R. Connolly, D.M. Gassner, H. Hahn, A. Hershcovitch, H.-C. Hseuh, P.D.J. Johnson, D. Kayran, J. Kewisch, R.F. Lambiase, G.J. Mahler, G.T. McIntyre, W. Meng, T.C.N. Nehring, T. Nicoletti, B. Oerter, D. Pate, J. Rank, T. Rao, T. Roser, T. Russo, J. Scaduto, K. Smith, N.W.W. Williams, K.-C. Wu, V. Yakimenko, K. Yip, A. Zaltsman, Y. Zhao
    BNL, Upton, Long Island, New York
  • H. Bluem, A. Burger, M.D. Cole, A.J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A.M.M. Todd
    AES, Princeton, New Jersey
  • J.R. Delayen, L. W. Funk, H.L. Phillips, J.P. Preble
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work performed under Contract Number DE-AC02-98CH10886 with the auspices of the U.S. Department of Energy.

We present the design and the parameters of a small Energy Recovery Linac (ERL) facility, which is under construction at BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. The possibility for future up-grade to a two-pass ERL is being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. We present the status and plans for this facility.