A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Pei, G.

Paper Title Page
TPPE036 Progress of the BEPCII Linac Upgrade 2416
 
  • G. Pei
    IHEP Beijing, Beijing
 
  BEPCII-an upgrade project of the BEPC is a factory type of e+e- collider. It requires its injector linac to have a higher beam energy (1.89 GeV) for on-energy injection and a higher beam current (40 mA e+ beam) for a higher injection rate (=50 mA/min.). The low beam emittance (1.6pmm-mrad for e+ beam, and 0.2pmm-mrad for 300 mA e- beam) and low beam energy spread (±0.5%) are also required to meet the storage ring acceptance. Hence we need a new electron gun system, a new positron source, a much higher power and more stable RF system with its phasing loops, and a new beam tuning system with orbit correction. Up to date, all system design and fabrication work have been completed. And in five months from May 1st of 2004, the positron production system–from the electron gun to the positron source, has been installed into the tunnel. In this paper, we will introduce major upgrades of each system, and present the recent beam commissioning.  
TOPD002 BEPCII -The Second Phase Construction of the Beijing Electron-Positron Collider 131
 
  • C. Zhang, G. Pei
    IHEP Beijing, Beijing
 
  The Beijing Electron-Positron Collider (BEPC) was constructed for both high energy physics and synchrotron radiation researches. The peak luminosity of the BEPC has reached its design goal of 5*1030 cm-2s-1 at J/sai energy of 1.55 GeV and 1*1031 cm-2s-1 at 2 GeV respectively. As the second phase construction of the BEPC, the BEPCII has been approved with total budget of 640 million RMB. The construction was started in the beginning of 2004 and is scheduled to be completed by the end of 2007. The BEPCII is a double ring machine with its luminosity goal of 1*1033 cm-2s-1 at 1.89 GeV, two orders of magnitude higher than present BEPC. The upgrading of the collider should also provide an improved SR performance with higher beam energy and intensity. The beam currents will be increased to 250 mA at E=2.5 GeV for the dedicated synchrotron radiation operation of the BEPCII. Some key technologies, such as superconducting RF system, low impedance vacuum devices, superconducting micro-beta quadrupoles and etc., are being developed in order to achieve the target of the BEPCII.*

*Submitted on behalf of the BEPCII Team.

 
WPAT075 Design and Calibration of a Phase and Amplitude Detector
 
  • Z. Geng, P. Gu, H.Mi. Hou, G. Pei
    IHEP Beijing, Beijing
 
  The phase and amplitude detector (PAD) is a key unit of the phasing system for BEPCII linac. One of the main functions of the PAD is to measure the phase of each klystron accurately from such large noises. To meet the need of the phasing system, a new PAD is constructed based on I/Q demodulator and industrial computer. But the I/Q demodulator suffers form phase and amplitude mismatch, which can draw big error on phase measurement. In order to compensate the mismatch of the I/Q demodulator, we develop a calibration program using an adaptive method, LMS method. Almost all the mismatches of the I/Q demodulator are compensated after calibration.  
RPPP003 Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider 874
 
  • H. Hayano, S. Araki, H. Hayano, Y. Higashi, Y. Honda, K.-I. Kanazawa, K. Kubo, T. Kume, M. Kuriki, S. Kuroda, M. Masuzawa, T. Naito, T. Okugi, R. Sugahara, T. Tauchi, N. Terunuma, N. Toge, J.U. Urakawa, V.V. Vogel, H. Yamaoka, K. Yokoya
    KEK, Ibaraki
  • I.V. Agapov, G.A. Blair, G.E. Boorman, J. Carter, C.D. Driouichi, M.T. Price
    Royal Holloway, University of London, Surrey
  • D.A.-K. Angal-Kalinin, R. Appleby, J.K. Jones, A. Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Bambade
    LAL, Orsay
  • K.L.F. Bane, A. Brachmann, T.M. Himel, T.W. Markiewicz, J. Nelson, N. Phinney, M.T.F. Pivi, T.O. Raubenheimer, M.C. Ross, R.E. Ruland, A. Seryi, C.M. Spencer, P. Tenenbaum, M. Woodley
    SLAC, Menlo Park, California
  • S.T. Boogert, A. Liapine, S. Malton
    UCL, London
  • H.-H. Braun, D. Schulte, F. Zimmermann
    CERN, Geneva
  • P. Burrows, G.B. Christian, S. Molloy, G.R. White
    Queen Mary University of London, London
  • J.Y. Choi, J.Y. Huang, H.-S. Kang, E.-S. Kim, S.H. Kim, I.S. Ko
    PAL, Pohang, Kyungbuk
  • S. Danagoulian
    North Carolina A&T State University, Greensboro, North Carolina
  • N. Delerue, D.F. Howell, A. Reichold, D. Urner
    OXFORDphysics, Oxford, Oxon
  • J. Gao, W. Liu, G. Pei, J.Q. Wang
    IHEP Beijing, Beijing
  • B.I. Grishanov, P.L. Logachev, F.V. Podgorny, V.I. Telnov
    BINP SB RAS, Novosibirsk
  • J.G. Gronberg
    LLNL, Livermore, California
  • Y. Iwashita, T. Mihara
    Kyoto ICR, Uji, Kyoto
  • M. Kumada
    NIRS, Chiba-shi
  • S. Mtingwa
    North Carolina University, Chapel Hill, North Carolina
  • O. Napoly, J. Payet
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • T.S. Sanuki, T.S. Suehara
    University of Tokyo, Tokyo
  • T. Takahashi
    Hiroshima University, Higashi-Hiroshima
  • E.T. Torrence
    University of Oregon, Eugene, Oregon
  • N.J. Walker
    DESY, Hamburg
 
  The realization of the International Linear Collider (ILC) will require the ability to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittancies are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 35nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists.