A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Paramonov, V.V.

Paper Title Page
TPPT041 RF Tuning and Fabrication Status of the First Module for J-PARC ACS 2684
 
  • H. Ao, T. Morishita, A. Ueno
    JAERI/LINAC, Ibaraki-ken
  • K. Hasegawa
    JAERI, Ibaraki-ken
  • M. Ikegami
    KEK, Ibaraki
  • V.V. Paramonov
    RAS/INR, Moscow
  • Y. Yamazaki
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
  J-PARC Linac starts with 180-MeV SDTL temporary, and it is upgraded to 400-MeV with 21 ACS (Annular Coupled Structure) modules and two ACS bunchers and two debunchers. First buncher module is under fabrication, and second buncher and a few accelerating modules are also planed until FY2006. The first ACS module consists of two 5-cells ACS tanks and a 5-cells bridge cavity for the buncher module. Three RF tuners are installed to the bridge cavity for fine RF tuning. An operating frequency should be tuned to 972 MHz within the fine-tuning range before a brazing process in a factory. The tuning procedure has been studied with RF simulation analysis and cold-model measurements for ACS and bridge cells. This paper describes RF tuning results, fabrication status and related development items.  
RPPP006 The PITZ Booster Cavity–A Prototype for the ILC Positron Injector Cavities 1030
 
  • V.V. Paramonov, L.V. Kravchuk
    RAS/INR, Moscow
  • K. Floettmann
    DESY, Hamburg
  • M. Krasilnikov, F. Stephan
    DESY Zeuthen, Zeuthen
 
  A critical issue of the design of the Positron Pre-Accelerator (PPA) for the future International Linear Collider (ILC) is the operational reliability of the normal conducting, high accelerating gradient L-band cavities. Now a booster cavity, intended for increasing the beam energy at the Photo Injector Test Facility in Zeuthen (PITZ), and developed by a joined INR-DESY group, is under construction at DESY, Hamburg. With the PITZ requirements (accelerating gradient up to 14 MV/m, rf pulse length up to 900 mks, repetition rate up to 5 Hz) this cavity, which is based on the Cut Disk Structure (CDS), is a full scale, high rf power prototype of the cavities proposed for the PPA. The booster cavity operation will allow us to confirm the main design ideas for the high gradient PPA cavities. A detailed technical study was performed during the booster cavity design, resulting in some modifications for the PPA cavities, which are described in this paper. We also propose a program of rf experiments with the PITZ booster cavity for further improvements of the PPA structures.