A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Okamura, M.

Paper Title Page
MPPE081 The Comparison of a New Beam-Tracking Code to the Acceleration Test 4072
 
  • K. Yamamoto, S. Yamada, K. Yamamoto
    NIRS, Chiba-shi
  • T. Hattori
    RLNR, Tokyo
  • M. Okamura
    RIKEN, Saitama
 
  A new beam-tracking code using a 3D electro-magnetic field map of a linac is being developed. In this code, beam dynamics including non-linear and dipole effects can be easily estimated based on simulated field maps provided by commercial 3D analysis software. To verify the code, we manufactured an IH-linac and acceleration test of the linac was carried out with proton beam. The simulated results were compared with the tested acceleration performances.  
MPPT046 Superconducting Helical Snake Magnet for the AGS 2935
 
  • E. Willen, M. Anerella, J. Escallier, G. Ganetis, A. Ghosh, R.C. Gupta, M. Harrison, A.K. Jain, A.U. Luccio, W.W. MacKay, A. Marone, J.F. Muratore, S.R. Plate, T. Roser, N. Tsoupas, P. Wanderer
    BNL, Upton, Long Island, New York
  • M. Okamura
    RIKEN, Saitama
 
  Funding: DOE

A superconducting helical magnet has been built for polarized proton acceleration in the Brookhaven AGS. This "partial Snake" magnet will help to reduce the loss of polarization of the beam due to machine resonances. It is a 3 T magnet some 1940 mm in magnetic length in which the dipole field rotates with a pitch of 0.2053 degrees/mm for 1154 mm in the center and a pitch of 0.3920 degrees/mm for 393 mm in each end. The coil cross-section is made of two slotted cylinders containing superconductor. In order to minimize residual offsets and deflections of the beam on its orbit through the Snake, a careful balancing of the coil parameters was necessary. In addition to the main helical coils, a solenoid winding was built on the cold bore tube inside the main coils to compensate for the axial component of the field that is experienced by the beam when it is off-axis in this helical magnet. Also, two dipole corrector magnets were placed on the same tube with the solenoid. A low heat leak cryostat was built so that the magnet can operate in the AGS cooled by several cryocoolers. The design, construction and performance of this unique magnet will be summarized.

 
TPPE027 Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme 1976
 
  • K. Sakakibara, T. Hattori, N. Hayashizaki, T. Ito
    RLNR, Tokyo
  • H. Kashiwagi
    JAERI/ARTC, Gunma-ken
  • M. Okamura
    RIKEN, Saitama
 
  To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).  
TPPE031 60 mA Carbon Beam Acceleration with DPIS 2206
 
  • M. Okamura, R.A. Jameson, K. Sakakibara, J. Takano
    RIKEN, Saitama
  • T. Fujimoto, S. Shibuya, T. Takeuchi
    AEC, Chiba
  • Y. Iwata, K. Yamamoto
    NIRS, Chiba-shi
  • H. Kashiwagi
    JAERI/ARTC, Gunma-ken
  • A. Schempp
    IAP, Frankfurt-am-Main
 
  We have studied "direct plasma injection scheme (DPIS)" since 2000. This new scheme is for producing very intense heavy ions using a combination of an RFQ and a laser ion source. An induced laser plasma goes directly into the RFQ without an extraction electrode nor any focusing devices. Obtained maximum peak current of Carbon 4+ beam reached 60 mA with this extremely simple configuration. The details of the experimental result will be presented.  
FPAE006 Optimization of AGS Polarized Proton Operation with the Warm Helical Snake 1003
 
  • J. Takano, M. Okamura
    RIKEN, Saitama
  • L. Ahrens, M. Bai, K.A. Brown, C.J. Gardner, J. Glenn, H. Huang, A.U. Luccio, W.W. MacKay, T. Roser, S. Tepikian, N. Tsoupas
    BNL, Upton, Long Island, New York
  • T. Hattori
    RLNR, Tokyo
 
  Funding: US DOE and RIKEN Japan.

A normal conducting helical dipole partial Siberian snake (Warm Snake) has been installed in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) for overcoming all of imperfection depolarizing resonances and reducing the transverse coupling resonances caused by the solenoidal Siberian snake which had been operated in AGS before the last polarized run. The polarized proton beam has been accelerated successfully with the warm snake and the polarization at extraction of the AGS was increased to 50% as opposed to 40% with the solenoidal snake. The magnetic field and beam trajectory in the warm snake was calculated by using the OPERA-3D/TOSCA software. We present optimization of the warm snake with beam during RUN5.

 
FPAE014 Acceleration of Polarized Protons in the AGS with Two Helical Partial Snakes 1404
 
  • H. Huang, L. Ahrens, M. Bai, A. Bravar, K.A. Brown, G. Bunce, E.D. Courant, C.J. Gardner, J. Glenn, R.C. Gupta, A.U. Luccio, W.W. MacKay, V. Ptitsyn, T. Roser, S. Tepikian, N. Tsoupas, E. Willen, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York
  • F. Lin
    IUCF, Bloomington, Indiana
  • M. Okamura
    RIKEN/RARF/CC, Saitama
  • J. Takano
    RIKEN, Saitama
  • D.G. Underwood
    ANL, Argonne, Illinois
  • J. Wood
    UCLA, Los Angeles, California
 
  Funding: Work supported by U.S. DOE and RIKEN of Japan.

The RHIC spin program requires 2*1011 proton/bunch with 70% polarization. As the injector to RHIC, AGS is the bottleneck for preserving polarization: there is not enough space in the ring to install a full snake to overcome the numerous depolarizing resonances. An ac dipole and a partial Siberian snake have been used to preserve beam polarization in the past. The correction with this scheme is not 100% since not all depolarizing resonances can be overcome. Recently, two helical snakes with double pitch design have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate all depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.