A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Novokhatski, A.

Paper Title Page
TPPP026 Bunch-Length Measurements in PEP-II 1934
 
  • A.S. Fisher, A. Novokhatski, J.L. Turner, U. Wienands, G. Yocky
    SLAC, Menlo Park, California
  • R. Holtzapple
    Alfred University, Alfred, New York
 
  Funding: Supported by U.S. Department of Energy contract DE-AC03-76SF00515.

We measured the lengths of colliding e+e- bunches in the PEP-II B Factory at SLAC using various techniques. First, at several RF voltages and with both single-bunch and multibunch beams, a synchroscan streak camera measured synchrotron emission through a narrow blue filter. With 3.8 MV of RF, the length of a single positron bunch was 12 mm at low current, rising to 13 mm at 1.5 mA and 14.8 mm at 3 mA. The electrons measured 12.2 mm with little current dependence. Both are longer than the expected low-current value of 10 mm (e+) and 11 mm (e-), derived from the energy spread and the measured synchrotron tune. We also determined the length from measurements between 2 and 13 GHz of the bunch spectrum on a BPM button. After correcting for the frequency dependence of cable attenuation, we then fit the measured spectrum to that of a Gaussian bunch. With 3.8 MV, the positrons measurement gave 13.2 mm at 1.5 mA/bunch in a full ring, in agreement with the streak camera, but we found 11.4 mm for the electrons at 16.7 MV and 1 mA/bunch, lower than the streak measurement.

 
TPPP028 Simulation of HOM Leakage in the PEP-II Bellows 2050
 
  • C.-K. Ng, N.T. Folwell, L. Ge, J. Langton, L. Lee, A. Novokhatski
    SLAC, Menlo Park, California
 
  Funding: Work supported by U.S. DOE contract, DE-AC02-76SF00515.

An important factor that limits the PEP-II from operating at higher currents is higher-order-mode (HOM) heating of the bellows. One source of HOM heating is the formation of trapped modes at the bellows as a result of geometry variation in the vacuum chamber, for example, the masking near the central vertex chamber. Another source comes from HOMs generated upstream that leak through the gaps between the bellows fingers. Modeling the fine details of the bellows and the surrounding geometry requires the resolution and accuracy only possible with a large number of mesh points on an unstructured grid. We use the parallel finite element eigensolver Omega3P for trapped mode calculations, and the S-matrix solver S3P for transmission analysis. The damping of the HOMs by the use of absorbers inside the bellows will be investigated.

 
TPPP029 A Preliminary Interaction Region Design for a Super B-Factory 2077
 
  • M.K. Sullivan, M.H. Donald, S. Ecklund, A. Novokhatski, J. Seeman, U. Wienands
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
 
  Funding: work supportted by the Department of Energy under contract number DE-AC03-76SF00515.

The success of the two B-Factories (PEP-II and KEKB) has encouraged us to look at design parameters for a B-Factory with a 30-50 times increase in the luminosity of the present machines (L~1e36). In order to achieve this high luminosity, the beta y* values are reduced to 3-2 mm, the bunch spacing is minimized (0.6-0.3 m) and the bunch currents are increased. Total beam currents range from 5-25 A. The interaction region (IR) of these "SuperB" designs presents special challenges. Synchrotron radiation fans from local bending in shared magnets and from upstream sources pose difficulties due to the high power levels in these fans. High-order-mode(HOM)heating, effects that have been seen in the present B-factories, will become much more pronounced with the very short bunches and high beam currents. Masking the detector beam pipe from synchrotron radiation must take into account effects of HOM power generation. Backgrounds that are a function of the luminosity will become very important. We present an initial design of an IR with a crossing angle of ± 14 mrad and include a discussion of the constraints, requirements and concerns that go into designing an IR for these very high luminosity e+e- machines.

 
TPPP030 Damping Higher Order Modes in the PEP-II B-Factory Vertex Bellows 2131
 
  • S.P. Weathersby, J. Langton, A. Novokhatski, J. Seeman
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC03-76SF00515.

Higher stored currents and shorter bunch lengths are requirements for increasing luminosity in colliding storage rings. As a result, more HOM power is generated in the IP region. This HOM power propagates to sensitive components causing undesirable heating, thus becoming a limiting issue for the PEP-II B-factory. HOM field penetration through RF shielding fingers has been shown to cause heating in bellows structures. To overcome these limitations, a proposal to incorporate ceramic absorbers within the bellows cavity to damp these modes is presented. Results show that the majority of modes of interest are damped, the effectiveness depending on geometrical considerations. An optimal configuration is presented for the PEP-II B-factory IR bellows component utilizing commercial grade ceramics with consideration for heat transfer requirements.

 
TPPP031 A Proposal for a New HOM Absorber in a Straight Section of the PEP-II Low Energy Ring 2173
 
  • S.P. Weathersby, M. Kosovsky, N. Kurita, A. Novokhatski, J. Seeman
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC03-76SF00515.

Attainment of high luminosity in storage ring colliders necessitates increasing stored currents and reducing bunch lengths. Consequently, intense beam fields will scatter more power into higher order modes from beam line sources such as collimators, masks and tapers. This power penetrates into sensitive components such as a bellows, causing undesirable heating and limits machine performance. To overcome this limitation we propose incorporating ceramic absorbers in the vicinity of the bellows to damp beam induced modes while preserving a matched impedance to the beam. This is accomplished with an absorber configuration which damps TE dipole and quadrupole traveling waves while preserving TM monopole propagation. A scattering parameter analysis is presented utilizing properties of commercial grade ceramics and indicates a feasible solution.

 
TPPP034 Parameters of a Super-B-Factory Design 2333
 
  • J. Seeman, Y. Cai, S. Ecklund, J.D. Fox, S.A. Heifets, N. Li, P.A. McIntosh, A. Novokhatski, M.K. Sullivan, D. Teytelman, U. Wienands
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
 
  Funding: Work supported by DOE contract DE-AC02-76SF00515.

Submitted for the High Luminosity Study Group: Parameters are being studied for a high luminosity e+e- collider operating at the Upsilon 4S that would deliver a luminosity in the range of 7 to 10 x 1035/cm2/s. Particle physics studies dictate that a much higher luminosity collider is needed to answer new key physics questions. A Super-B-Factory with 20 to 100 times the performance of the present PEP-II accelerator would incorporate a higher frequency RF system, lower impedance vacuum chambers, higher power synchrotron radiation absorbers, and stronger bunch-by-bunch feedback systems. Parameter optimizations are discussed.

 
TPPP035 Performance of the PEP-II B-Factory Collider at SLAC 2369
 
  • J. Seeman, J. Browne, Y. Cai, S. Colocho, F.-J. Decker, M.H. Donald, S. Ecklund, R.A. Erickson, A.S. Fisher, J.D. Fox, S.A. Heifets, R.H. Iverson, A. Kulikov, N. Li, A. Novokhatski, M.C. Ross, P. Schuh, T.J. Smith, K.G. Sonnad, M. Stanek, M.K. Sullivan, P. Tenenbaum, D. Teytelman, J.L. Turner, D. Van Winkle, M. Weaver, U. Wienands, M. Woodley, Y.T. Yan, G. Yocky
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • C. Steier, A. Wolski
    LBNL, Berkeley, California
  • G. Wormser
    IPN, Orsay
 
  Funding: Work supported by DOE contract DE-AC02-76SF00515.

For the PEP-II Operation Staff: PEP-II is an asymmetric e+e- collider operating at the Upsilon 4S and has recently set several performance records. The luminosity has reached 9.2 x 1033/cm2/s. PEP-II has delivered an integrated luminosity of 710/pb in one day. It operates in continuous injection mode for both beams boosting the integrated luminosity. The peak positron current has reached 2.55 A in 1588 bunches. The total integrated luminosity since turn on in 1999 has reached 256/fb. This paper reviews the present performance issues of PEP-II and also the planned increase of luminosity in the near future to over 2 x 1034/cm2/s. Upgrade details and plans are discussed.

 
FOAA003 HOM Effects in Vacuum System with Short Bunches 289
 
  • A. Novokhatski
    SLAC, Menlo Park, California
 
  Funding: Work supported by Department of Energy contract DE–AC02–76SF00515.

High luminosity in electron-positron factories requires high beam currents of very short bunches. SLAC PEP-II and KEKB B-factories are progressively increasing currents and gaining more and more luminosity. Because of this the interaction of high currents and vacuum chamber elements becomes more important for the operation of the rings. High Order Modes (HOM) excited by short intense bunches propagate along the vacuum chamber, penetrating and dissipating inside vital vacuum elements like shielded bellows, vacuum valves and vacuum pumps. As a result these elements can heat up or have temperature oscillations. Often HOM heating has a resonance character. HOM heating of vacuum pumps can lead to vacuum pressure increases. High frequency modes excited by short bunches “check” the quality of the vacuum chamber by detecting small gaps, weak RF screens or weak feed-through. At these high currents even smooth tapers and smooth collimators become a source of HOM production. We will discuss the physical nature of these very interesting HOM effects.