A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Nicklaus, D.J.

Paper Title Page
MPPP012 First-Principles Simulation and Comparison with Beam Tests for Transverse Instabilities and Damper Performance in the Fermilab Main Injector 1300
 
  • D.J. Nicklaus, G.W. Foster, V.S. Kashikhin
    Fermilab, Batavia, Illinois
 
  An end-to-end performance calculation and comparison with beam tests was performed for the bunch-by-bunch digital transverse damper in the Fermilab Main Injector. Time dependent magnetic wakefields responsible for "Resistive Wall" transverse instabilities in the Main Injector were calculated with OPERA-2D using the actual beam pipe and dipole magnet lamination geometry. The leading order dipole component was parameterized and used as input to a bunch-by-bunch simulation which included the filling pattern and injection errors experienced in high-intensity operation of the Main Injector. The instability growth times, and the spreading of the disturbance due to newly mis-injected batches was compared between simulations and beam data collected by the damper system. Further simulation models the effects of the damper system on the beam.  
MPPP015 Operational Performance of a Bunch by Bunch Digital Damper in the Fermilab Main Injector 1440
 
  • P. Adamson, P. Adamson
    UCL, London
  • B. Ashmanskas, G.W. Foster, S. U. Hansen, A. Marchionni, D.J. Nicklaus, A. Semenov, D. Wildman
    Fermilab, Batavia, Illinois
  • H. Kang
    Stanford University, Stanford, Califormia
 
  We have implemented a transverse and longitudinal bunch by bunch digital damper system in the Fermilab Main Injector, using a single digital board for all 3 coordinates. The system has been commissioned over the last year, and is now operational in all MI cycles, damping beam bunched at both 53MHz and 2.5MHz. We describe the performance of this system both for collider operations and high-intensity running for the NuMI project.