A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Neuffer, D.V.

Paper Title Page
TPPP047 New and Efficient Neutrino Factory Front-End Design 2986
 
  • J.C. Gallardo, J.S. Berg, R.C. Fernow, H.G. Kirk, R. Palmer
    BNL, Upton, Long Island, New York
  • D.V. Neuffer
    Fermilab, Batavia, Illinois
  • K. Paul
    Muons, Inc, Batavia
 
  Funding: Work supported by U.S. Department of Energy.

As part of the APS Joint Study on the Future of Neutrino Physics* we have carried out detailed studies of the Neutrino Factory front-end. A major goal of the new study was to achieve equal performance to our earlier feasibility studies** at reduced cost. The optimal channel design is described in this paper. New innovations included an adiabatic buncher for phase rotation and a simplified cooling channel with LiH absorbers. The linear channel is 295 m long and produces 0.17 muons per proton on target into the assumed accelerator transverse acceptance of 30 mm and longitudinal acceptance of 150 mm.

*APS Multi-Divisional Study of the Physics of Neutrinos, http://www.aps.org/neutrino/. **S.Ozaki, R.B.Palmer, M.Zisman and J.C.Gallardo, edts., Tech. Rep., BNL-52623 (2001), http://www.cap.bnl.gov/mumu/studyii/FS2-report.html.

 
TPPP055 Simultaneous Bunching and Precooling Muon Beams with Gas-Filled RF Cavities 3295
 
  • K. Paul, R.P. Johnson, T.J. Roberts
    Muons, Inc, Batavia
  • Y.S. Derbenev
    Jefferson Lab, Newport News, Virginia
  • D.V. Neuffer
    Fermilab, Batavia, Illinois
 
  Funding: This work was supported in part by DOE SBIR grant DE-FG02-03ER83722.

High-gradient, pressurized RF cavities are investigated as a means to improve the capture efficiency, to effect phase rotation to reduce momentum spread, and to reduce the angular divergence of a muon beam. Starting close to the pion production target to take advantage of the short incident proton bunch, a series of pressurized RF cavities imbedded in a strong solenoidal field is used to capture, cool, and bunch the muon beam. We discuss the anticipated improvements from this approach to the first stage of a muon cooling channel as well as the requirements of the RF cavities needed to provide high gradients while operating in intense magnetic and radiation fields.

 
ROAA005 Recent Innovations in Muon Beam Cooling and Prospects for Muon Colliders 419
 
  • R.P. Johnson, M. Alsharo'a, P.M. Hanlet, R. E. Hartline, M. Kuchnir, K. Paul, T.J. Roberts
    Muons, Inc, Batavia
  • C.M. Ankenbrandt, E. Barzi, L. DelFrate, I.G. Gonin, A. Moretti, D.V. Neuffer, M. Popovic, G. Romanov, D. Turrioni, V. Yarba
    Fermilab, Batavia, Illinois
  • K. Beard, S.A. Bogacz, Y.S. Derbenev
    Jefferson Lab, Newport News, Virginia
  • D.M. Kaplan, K. Yonehara
    Illinois Institute of Technology, Chicago, Illinois
 
  Funding: This work was supported in part by DOE SBIR/STTR grants DE-FG02-02ER86145, 03ER83722, 04ER84015, 04ER86191, and 04ER84016.

A six-dimensional(6D)cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas* is used to achieve the small transverse emittances demanded by a high-luminosity muon collider. This helical cooling channel**(HCC) has solenoidal, helical dipole, and helical quadrupole magnetic fields to generate emittance exchange. Simulations verify the analytic predictions and have shown a 6D emittance reduction of over 3 orders of magnitude in a 100 m HCC segment. Using three such sequential HCC segments, where the RF frequencies are increased and transverse dimensions reduced as the beams become cooler, implies a 6D emittance reduction of almost six orders of magnitude. After this, two new post-cooling ideas can be employed to reduce transverse emittances to one or two mm-mr, which allows high luminosity with fewer muons than previously imagined. In this report we discuss the status of and the plans for the HCC simulation and engineering efforts. We also describe the new post-cooling ideas and comment on the prospects for a Higgs factory or energy frontier muon collider using existing laboratory infrastructure.

*R. P. Johnson et al. LINAC2004, www.muonsinc.com/TU203.pdf. **Y. Derbenev and R.P. Johnson, Submitted to PRSTAB, http://www-mucool.fnal.gov/mcnotes/public/pdf/muc0284/muc0284.pdf.

 
RPPP049 Bunching for Shorter Damping Rings for the ILC 3052
 
  • D.V. Neuffer
    Fermilab, Batavia, Illinois
 
  A variant rearrangement of the bunch trains for the ILC that enables much shorter damping rings is presented. In a particular example the ~2280 bunches are regrouped into ~450 subtrains of five adjacent bunches. These subtrains are extracted from the damping rings at ~2.2 ms intervals, obtaining the 1ms macrobunch length of the baseline TESLA collider scenario. If the baseline damping rf frequency is 325 MHz and the kicker rise and fall times are ~20 ns, a ring circumference of ~4.5km is required. Variations of the scheme could easily reduce the circumference to ~3km, and faster kickers could reduce it even further.  
FPAE009 Bunched Beam Cooling in the Fermilab Recycler 1153
 
  • D.V. Neuffer, D.R. Broemmelsiek, A.V. Burov, S. Nagaitsev
    Fermilab, Batavia, Illinois
 
  Stochastic cooling with bunched beam in a linear bucket has been obtained and implemented operationally in the fermilab recycler. In this implementation the particle bunch length is much greater than the cooling system wavelengths. The simultaneous longitudinal bunching enables cooling to much smaller longitudinal emittances than the coasting beam or barrier bucket system. Characteristics and limitations of bunched beam stochastic cooling are discussed.