A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Napoly, O.

Paper Title Page
TPPP033 Cavity Alignment Using Beam Induced Higher Order Modes Signals in the TTF Linac 2284
 
  • M.C. Ross, J.C. Frisch, K.E. Hacker, R.M. Jones, D.J. McCormick, C.L. O'Connell, T.J. Smith
    SLAC, Menlo Park, California
  • N. Baboi, M.W. Wendt
    DESY, Hamburg
  • O. Napoly, R. Paparella
    CEA/DSM/DAPNIA, Gif-sur-Yvette
 
  Funding: DE-AC02-76SF00515.

Each nine cell superconducting accelerator cavity in the TESLA Test Facility (TTF) at DESY* has two higher order mode (HOM) couplers that efficiently remove the HOM power.** They can also provide useful diagnostic signals. The most interesting modes are in the first 2 cavity dipole passbands. They are easy to identify and their amplitude depends linearly on the beam offset from the cavity axis making them excellent beam position monitors (BPM). By steering the beam through an eight-cavity cryomodule, we can use the HOM signals to estimate internal residual alignment errors and minimize wakefield related beam emittance growth. We built and commissioned a four channel heterodyne receiver and time-domain based waveform recorder system that captures information from each mode in these two bands on each beam pulse. In this paper we present an experimental study of the single-bunch generated HOM signals at the TTF linac including estimates of cavity alignment precision and HOM BPM resolution.

*P. Piot, DESY-TESLA-FEL-2002-08. **R. Brinkmann et al. (eds.), DESY-2001-011.

 
RPPE001 The CARE Accelerator R&D Programme in Europe 749
 
  • O. Napoly, R. Aleksan, A. Devred
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • A. Den Ouden
    Twente University, Laser Physics and Non-Linear Optics Group, Enschede
  • R. Garoby, R. Losito, L. Rinolfi, F. Ruggiero, W. Scandale, D. Schulte, M. Vretenar
    CERN, Geneva
  • T. Garvey, F. Richard
    LAL, Orsay
  • A. Ghigo
    INFN/LNF, Frascati (Roma)
  • E. Gschwendtner
    CUI, Geneva
  • H. Mais, D. Proch
    DESY, Hamburg
  • V. Palladino
    INFN-Napoli, Napoli
 
  Funding: This work is supported by the European Community-Research Infrastructure Activity under the FP6 “Structuring the European Research Area” programme (CARE, contract number RII3-CT-2003-506395).

CARE, an ambitious and coordinated programme of accelerator research and developments oriented towards HEP projects, has been launched in January 2004 by the main European laboratories and the European Commission within the 6th Framework Programme. This programme aims at improving existing infrastructures dedicated to future projects such as linear colliders, upgrades of hadron colliders and high intensity proton drivers. An important part of this programme is devoted to advancing the performance of the superconducting technology, both in the fields of RF cavities for electron and proton acceleration and of high field magnets, as well as to developing high intensity electron and proton injectors. We describe the R&D plans of the four main R&D activities and report on the results and progress obtained so far.

 
RPPP003 Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider 874
 
  • H. Hayano, S. Araki, H. Hayano, Y. Higashi, Y. Honda, K.-I. Kanazawa, K. Kubo, T. Kume, M. Kuriki, S. Kuroda, M. Masuzawa, T. Naito, T. Okugi, R. Sugahara, T. Tauchi, N. Terunuma, N. Toge, J.U. Urakawa, V.V. Vogel, H. Yamaoka, K. Yokoya
    KEK, Ibaraki
  • I.V. Agapov, G.A. Blair, G.E. Boorman, J. Carter, C.D. Driouichi, M.T. Price
    Royal Holloway, University of London, Surrey
  • D.A.-K. Angal-Kalinin, R. Appleby, J.K. Jones, A. Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Bambade
    LAL, Orsay
  • K.L.F. Bane, A. Brachmann, T.M. Himel, T.W. Markiewicz, J. Nelson, N. Phinney, M.T.F. Pivi, T.O. Raubenheimer, M.C. Ross, R.E. Ruland, A. Seryi, C.M. Spencer, P. Tenenbaum, M. Woodley
    SLAC, Menlo Park, California
  • S.T. Boogert, A. Liapine, S. Malton
    UCL, London
  • H.-H. Braun, D. Schulte, F. Zimmermann
    CERN, Geneva
  • P. Burrows, G.B. Christian, S. Molloy, G.R. White
    Queen Mary University of London, London
  • J.Y. Choi, J.Y. Huang, H.-S. Kang, E.-S. Kim, S.H. Kim, I.S. Ko
    PAL, Pohang, Kyungbuk
  • S. Danagoulian
    North Carolina A&T State University, Greensboro, North Carolina
  • N. Delerue, D.F. Howell, A. Reichold, D. Urner
    OXFORDphysics, Oxford, Oxon
  • J. Gao, W. Liu, G. Pei, J.Q. Wang
    IHEP Beijing, Beijing
  • B.I. Grishanov, P.L. Logachev, F.V. Podgorny, V.I. Telnov
    BINP SB RAS, Novosibirsk
  • J.G. Gronberg
    LLNL, Livermore, California
  • Y. Iwashita, T. Mihara
    Kyoto ICR, Uji, Kyoto
  • M. Kumada
    NIRS, Chiba-shi
  • S. Mtingwa
    North Carolina University, Chapel Hill, North Carolina
  • O. Napoly, J. Payet
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • T.S. Sanuki, T.S. Suehara
    University of Tokyo, Tokyo
  • T. Takahashi
    Hiroshima University, Higashi-Hiroshima
  • E.T. Torrence
    University of Oregon, Eugene, Oregon
  • N.J. Walker
    DESY, Hamburg
 
  The realization of the International Linear Collider (ILC) will require the ability to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittancies are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 35nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists.