A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Moore, C.D.

Paper Title Page
TPAP030 Tevatron Alignment Issues 2003-2004 2146
 
  • J.T. Volk, J. Annala, L. Elementi, N.M. Gelfand, K. Gollwitzer, J.A. Greenwood, M.A. Martens, C.D. Moore, A. Nobrega, A.D. Russell, T. Sager, V.D. Shiltsev, R. Stefanski, M.J. Syphers, G. Wojcik
    Fermilab, Batavia, Illinois
 
  Funding: U.S. Department of Energy under contract No. DE-AC02-76CH03000.

It was observed during the early part of Run II that dipole corrector currents in the Tevatron were changing over time. Measurement of the roll for dipoles and quadrupoles confirmed that there was a slow and systematic movement of the magnets from their ideal position. A simple system using a digital protractor and laptop computer was developed to allow roll measurements of all dipoles and quadrupoles. These measurements showed that many magnets in the Tevatron had rolled more than 1 milli-radian. To aid in magnet alignment a new survey network was built in the Tevatron tunnel. This network is based on the use of free centering laser tracker. During the measurement of the network coordinates for all dipole, quadrupole and corrector magnets were obtained. This paper discusses roll measurement techniques and data, the old and new Tevatron alignment network.

 
RPAT044 Segmented Foil SEM Grids at Fermilab 2821
 
  • S.E. Kopp, D. Indurthy, Z. Pavlovich, M. Proga, R.M. Zwaska
    The University of Texas at Austin, Austin, Texas
  • B.B. Baller, S.C. Childress, R. Ford, D. Harris, C.L.K. Kendziora, C.D. Moore, G. R. Tassotto
    Fermilab, Batavia, Illinois
 
  Segmented Secondary Emission Monitors (SEM's) will be used to monitor the extracted 120 GeV proton beam for the NuMI facility at Fermilab. The SEM's are constructed from 5 micrometer thick Ti foils. The chambers have 10 cm beam aperture, and the foils are designed to result in 4·10-6 fractional beam loss when inserted in the beam. The foil strips have dynamic tensioning to withstand the heating from the 400kW proton beam. Results from prototype beam tests as well as from commissioning in the NuMI line will be presented.