A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Lin, J.-Y.

Paper Title Page
TPAE064 Externally Controlled Injection of Electrons by a Laser Pulse in a Laser Wakefield Electron Accelerator 3644
 
  • S.-Y. Chen, C.-L. Chang, W.-T. Chen, T.-Y. Chien, C.-H. Lee, J.-Y. Lin, J. Wang
    IAMS, Taipei
 
  Funding: National Science Council, Taiwan

Spatially and temporally localized injection of electrons is a key element for development of plasma-wave electron accelerator. Here we report the demonstration of two different schemes for electron injection in a self-modulated laser wakefield accelerator (SM-LWFA) by using a laser pulse. In the first scheme, by implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. We found that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the pump pulse. In the second scheme, by using a transient density ramp we achieve self-injection of electrons in a SM-LWFA with spatial localization. The transient density ramp is produced by a prepulse propagating transversely to drill a density depression channel via ionization and expansion. The same mechanism of injection with comparable efficiency is also demonstrated with a transverse plasma waveguide driven by Coulomb explosion.