A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Lamm, M.J.

Paper Title Page
MPPT044 The Construction of the Low-Beta Triplets for the LHC 2798
 
  • R. Ostojic, M. Karppinen, T.M. Taylor, W.  Venturini Delsolaro
    CERN, Geneva
  • R. Bossert, J. DiMarco, SF. Feher, J.S. Kerby, M.J. Lamm, T.H. Nicol, A. Nobrega, T.M. Page, T. Peterson, R. Rabehl, P. Schlabach, J. Strait, C. Sylvester, M. Tartaglia, G. Velev
    Fermilab, Batavia, Illinois
  • N. Kimura, T. Nakamoto, T. Ogitsu, N. Ohuchi, t.s. Shintomi, K. Tsuchiya, A. Yamamoto
    KEK, Ibaraki
 
  The performance of the LHC depends critically on the low-beta triplets, located on either side of the four interaction points. Each triplet consists of four superconducting quadrupole magnets, which must operate reliably at up to 215 T/m, sustain extremely high heat loads and have an excellent field quality. A collaboration of CERN, Fermilab and KEK was set up in 1996 to design and build the triplet systems, and after nine years of joint effort the production will be completed in 2005. We retrace the main events of the project and present the design features and performance of the low-beta quadrupoles, built by KEK and Fermilab, as well as of other vital elements of the triplet. The experience in assembly of the first triplet at CERN and plans for tunnel installation and commissioning in the LHC are also presented. Apart from the excellent technical results, the construction of the LHC low-beta triplets has been a highly enriching experience combining harmoniously the different competences and approaches to engineering in a style reminiscent of physics experiment collaborations, and rarely before achieved in accelerator building.  
TOAA002 U.S. Accelerator Contribution to the LHC 184
 
  • M.J. Lamm
    Fermilab, Batavia, Illinois
 
  In 1998, the United States entered into an agreement with CERN to help build the Large Hadron Collider (LHC), with contributions to the accelerator and to the large HEP detectors. To accomplish this, the US LHC Accelerator Project was formed, encompassing expertise from Brookhaven National Laboratory, Fermi National Accelerator Laboratory and the Lawrence Berkeley National Laboratory. Contributions from the US LHC Accelerator project included superconducting high gradient quadrupoles and beam separation dipoles for the four interaction regions and the RF section; feedboxes for cryogenic, power and instrumentation distribution; neutral and hadron beam absorbers in the high luminosity regions; design of the inner triplet cryogenic system; beam tracking studies utilizing the design IR magnet field quality and magnet alignment; particle heat deposition studies in the IR’s; and short sample characterization of superconducting cables used in the arc dipoles and quadrupoles. This report is a summary of these contributions including the progress towards project completion, as well as a discussion of future plans for US participation in the LHC accelerator.  
TOAA004 Field Quality Study in Nb3Sn Accelerator Magnets 366
 
  • V. Kashikhin, G. Ambrosio, N. Andreev, E. Barzi, R. Bossert, J. DiMarco, V.S. Kashikhin, M.J. Lamm, I. Novitski, P. Schlabach, G. Velev, R. Yamada, A.V. Zlobin
    Fermilab, Batavia, Illinois
 
  Funding: This work was supported by the U.S. Department of Energy.

High field accelerator magnets are being developed at Fermilab for present and next generation hadron colliders. These magnets are designed for a nominal field of 10-12 T in the magnet bore of 40-50 mm and an operating temperature of 4.5 K. To achieve these design parameters, a new, high-performance Nb3Sn superconducting strand is used. Four short Nb3Sn dipole models of the same design based on a single-bore cos-theta coil and a cold iron yoke have been fabricated and tested at Fermilab. Their field quality was measured at room temperature during magnet fabrication and at helium temperature. This paper reports the results of warm and cold magnetic measurements. The systematic geometrical harmonics and their RMS spread due to cross-section imperfections, the coil magnetization effects caused by persistent currents in superconductor and eddy current in the cable, the "snap-back" effect at injection and the iron saturation effect at high fields are presented and compared with theoretical predictions.

 
TPAP029 Measurements of Field Decay and Snapback Effect on Tevatron Dipole and Quadrupole Magnets 2098
 
  • G. Velev, G. Ambrosio, G. Annala, P. Bauer, R. H. Carcagno, J. DiMarco, H.D. Glass, R. Hanft, R.D. Kephart, M.J. Lamm, M.A. Martens, P. Schlabach, C. Sylvester, M. Tartaglia, J. Tompkins
    Fermilab, Batavia, Illinois
 
  Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility to understand dynamic effects in the Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field "snapback" during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 20 s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.  
FPAT060 An FPGA-Based Quench Detection and Protection System for Superconducting Accelerator Magnets 3502
 
  • R. H. Carcagno, SF. Feher, M.J. Lamm, A. Makulski, R. Nehring, D.F. Orris, Y.M.P. Pischalnikov, M. Tartaglia
    Fermilab, Batavia, Illinois
 
  A new quench detection and protection system for superconducting accelerator magnets was developed at the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commerically available, integrated hardware and software components. It provides most of the functionality of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and has a more powerful user interface and analysis tools. First applications of the new system will be for testing corrector coil packages. In this paper we describe the new system and present results of testing LHC Interaction Region Quadrupole (IRQ) correctors.