A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Lambiase, R.F.

Paper Title Page
WPAE072 Installation and Testing of SNS Magnet Power Supplies 3889
 
  • K.R. Rust, W.E. Barnett, R.I. Cutler, J. T. Weaver
    ORNL, Oak Ridge, Tennessee
  • S. Dewan, R. Holmes, S. Wong
    IE Power Inc., Mississauga, Ontario
  • R.F. Lambiase, J. Sandberg
    BNL, Upton, Long Island, New York
  • J. Zeng
    Digital Predictive Systems Inc., Toronto
 
  Funding: This work was supported by SNS through UT-Batelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

This paper describes the types and quantities of magnet power supplies required for the SNS Linear Accelerator, High-Energy Beam Transport (HEBT), Ring and the Ring-Target Beam Transport (RTBT). There are over 600 magnets and more than 550 magnet power supplies. These magnet power supplies range in size from the bipolar-corrector supplies rated at 35 volts, 20 amps to the main-ring dipole supply that is rated at 440 volts, 6000 amps. The Linac power supplies have a ripple/stability specification of 1000 parts per million while the ring supplies have a specification of 100 parts per million. There are also pulsed power supplies for beam injection and beam extraction. The paper will show acceptance test results from the manufacturers as well as test results performed by the SNS magnet power supply group.

 
TPAP043 Electron Cooling of RHIC 2741
 
  • I. Ben-Zvi, D.S. Barton, D.B. Beavis, M. Blaskiewicz, J.M. Brennan, A. Burrill, R. Calaga, P. Cameron, X.Y. Chang, R. Connolly, Yu.I. Eidelman, A.V. Fedotov, W. Fischer, D.M. Gassner, H. Hahn, M. Harrison, A. Hershcovitch, H.-C. Hseuh, A.K. Jain, P.D.J. Johnson, D. Kayran, J. Kewisch, R.F. Lambiase, V. Litvinenko, W.W. MacKay, G.J. Mahler, N. Malitsky, G.T. McIntyre, W. Meng, K.A.M. Mirabella, C. Montag, T.C.N. Nehring, T. Nicoletti, B. Oerter, G. Parzen, D. Pate, J. Rank, T. Rao, T. Roser, T. Russo, J. Scaduto, K. Smith, D. Trbojevic, G. Wang, J. Wei, N.W.W. Williams, K.-C. Wu, V. Yakimenko, A. Zaltsman, Y. Zhao
    BNL, Upton, Long Island, New York
  • D.T. Abell, D.L. Bruhwiler
    Tech-X, Boulder, Colorado
  • H. Bluem, A. Burger, M.D. Cole, A.J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A.M.M. Todd
    AES, Princeton, New Jersey
  • A.V. Burov, S. Nagaitsev
    Fermilab, Batavia, Illinois
  • J.R. Delayen, Y.S. Derbenev, L. W. Funk, P. Kneisel, L. Merminga, H.L. Phillips, J.P. Preble
    Jefferson Lab, Newport News, Virginia
  • I. Koop, V.V. Parkhomchuk, Y.M. Shatunov, A.N. Skrinsky
    BINP SB RAS, Novosibirsk
  • I.N. Meshkov, A.O. Sidorin, A.V. Smirnov, G.V. Troubnikov
    JINR, Dubna, Moscow Region
  • J.S. Sekutowicz
    DESY, Hamburg
 
  We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.agsrhichome.bnl.gov/eCool/.

Under contract with the U.S. Department of Energy, Contract Number DE-AC02-98CH10886.

 
RPPE009 Extremely High Current, High-Brightness Energy Recovery Linac 1150
 
  • I. Ben-Zvi, D.S. Barton, D.B. Beavis, M. Blaskiewicz, J.M. Brennan, A. Burrill, R. Calaga, P. Cameron, X.Y. Chang, R. Connolly, D.M. Gassner, J.G. Grimes, H. Hahn, A. Hershcovitch, H.-C. Hseuh, P.D.J. Johnson, D. Kayran, J. Kewisch, R.F. Lambiase, V. Litvinenko, G.T. McIntyre, W. Meng, T.C.N. Nehring, T. Nicoletti, B. Oerter, D. Pate, J. Rank, T. Rao, T. Roser, T. Russo, J. Scaduto, Z. Segalov, K. Smith, N.W.W. Williams, K.-C. Wu, V. Yakimenko, K. Yip, A. Zaltsman, Y. Zhao
    BNL, Upton, Long Island, New York
  • H. Bluem, A. Burger, M.D. Cole, A.J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A.M.M. Todd
    AES, Princeton, New Jersey
  • J.R. Delayen, L. W. Funk, P. Kneisel, H.L. Phillips, J.P. Preble
    Jefferson Lab, Newport News, Virginia
 
  Funding: Under contract with the U.S. Department of Energy, U.S. DOD Office of Naval Research and Joint Technology Office.

Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL’s Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

 
RPPT032 High Current Energy Recovery Linac at BNL 2242
 
  • V. Litvinenko, D.B. Beavis, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, A. Burrill, R. Calaga, P. Cameron, X.Y. Chang, R. Connolly, D.M. Gassner, H. Hahn, A. Hershcovitch, H.-C. Hseuh, P.D.J. Johnson, D. Kayran, J. Kewisch, R.F. Lambiase, G.J. Mahler, G.T. McIntyre, W. Meng, T.C.N. Nehring, T. Nicoletti, B. Oerter, D. Pate, J. Rank, T. Rao, T. Roser, T. Russo, J. Scaduto, K. Smith, N.W.W. Williams, K.-C. Wu, V. Yakimenko, K. Yip, A. Zaltsman, Y. Zhao
    BNL, Upton, Long Island, New York
  • H. Bluem, A. Burger, M.D. Cole, A.J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A.M.M. Todd
    AES, Princeton, New Jersey
  • J.R. Delayen, L. W. Funk, H.L. Phillips, J.P. Preble
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work performed under Contract Number DE-AC02-98CH10886 with the auspices of the U.S. Department of Energy.

We present the design and the parameters of a small Energy Recovery Linac (ERL) facility, which is under construction at BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. The possibility for future up-grade to a two-pass ERL is being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. We present the status and plans for this facility.