A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kwiatkowski, S.

Paper Title Page
WPAT066 ALS Booster Ring RF System Upgrade for Top-Off Mode of Operation 3709
 
  • S. Kwiatkowski, K.M. Baptiste
    LBNL, Berkeley, California
 
  Funding: Supported by the U.S. Department of Energy under Contract No.DE-AC03-76SF00098.

ALS is one of the first third generation synchrotron light sources which has been operating since 1993 at Berkeley Lab. In the present ALS operation scenario 1.5GeV electron beam is injected from the booster into the storage ring every 8 hours where is accelerated to the final energy of 1.9GeV. The beam decays between fills from 400mA to 200mA with the time average current of 250mA. In order to increase the beam brighthess ALS team plans to increase the beam current to 500mA and maintain it constant during machine operation ("Top-Off" mode of operation). This operation scenario will require full energy injection from the booster ring into the storage ring and constant operation of the injector (10 bunches with the total charge of 1nC every 30 to 35 seconds). In this paper we will present the results of the ALS injector RF system analysis fo Top-Off mode of operation and describe the way we intent to implement the necessary modifications to the booster RF system.

 
RPAE065 Generation of Picosecond X-Ray Pulses in the ALS Using RF Orbit Deflection 3659
 
  • D. Robin, J.M. Byrd, P. Fischer, P.A. Heimann, D.H. Kim, S. Kwiatkowski, D. Li, F. Sannibale, C. Steier, W. Wan, W. Wittmer, A. Zholents
    LBNL, Berkeley, California
 
  Funding: This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098.

A scheme is studied for producing ps length pulses of x-ray radiation from the Advanced Light Source (ALS) using two RF deflecting cavities. The cavities create vertical displacements of electrons correlated with their longitudinal position in the bunch. The two cavities separated by 180 degrees of vertical phase advance. This allows the vertical kick from one cavity to be compensated by the vertical kick of the other. The location of the cavities corresponds to the end of one straight section and the beginning of the following straight section. Halfway between the cavities a bending magnet source is located. The radiation from the bend can be compressed to ~1 ps in duration.

 
RPAE067 Investigations, Experiments, and Implications for Using Existing Pulse Magnets for 'topoff' Operation at the Advanced Light Source 3727
 
  • G.D. Stover, K.M. Baptiste, W. Barry, J. Gath, J. Julian, S. Kwiatkowski, S. Prestemon, R.D. Schlueter, D. Shuman, C. Steier
    LBNL, Berkeley, California
 
  Funding: This work was supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

ALS top-off mode of operation will require injection of the electron beam from the Booster Ring into the Storage Ring at the full ALS energy level of 1.9GeV. Currently the Booster delivers a beam at 1.5GeV to the Storage Ring where it is then ramped to the full energy and stored for the user operation. The higher Booster beam energy will require the pulse magnets in the Booster and Storage Rings to operate at proportionally higher magnetic gap fields. Our group studied and tested the possible design and installation modifications required to operate the magnets and drivers at "top-off" levels. Our results and experiments show that with minor electrical modifications all the existing pulse magnet systems can be used at the higher energy levels, and the increased operational stresses should have a negligible impact on magnet reliability. Furthermore, simple electrical modifications to the storage ring thick septum will greatly reduce the present level of septum stray leakage fields into the storage ring beam.