A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kursun, Z.

Paper Title Page
WPAT085 4.2 K Operation of the SNS Cryomodules 4173
 
  • I.E. Campisi, S. Assadi, F. Casagrande, M. Champion, C. Chu, S.M. Cousineau, M.T. Crofford, C. Deibele, J. Galambos, P.A. Gurd, D.R. Hatfield, M.P. Howell, D.-O. Jeon, Y.W. Kang, K.-U. Kasemir, Z. Kursun, H. Ma, M.F. Piller, D. Stout, W.H. Strong, A.V. Vassioutchenko, Y. Zhang
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos and Oak Ridge.

The Spallation Neutron Source being built at the Oak Ridge National Laboratory employs eighty one 805 MHz superconducting cavities operated at 2.1 K for the H- beam to gain energy in the main linac from 187 MeV to about 1 GeV. The superconducting cavities and cryomodules with two different values of beta .61 and .81 have been designed and constructed at Jefferson Lab for operation at 2.1 K with unloaded Q’s in excess of 5x109. To gain experience in testing cryomodules in the SNS tunnel before the final commissioning of the 2.1 K Central Helium Liquefier, integration tests were conducted on a medium beta (.61) cryomodule at 4.2 K. This is the first time that a superconducting cavity system specifically designed for 2.1 K operation has been extensively tested at 4.2 K without superfluid helium. Even at 4.2 K it was possible to test all of the functional properties of the cryomodule and of the cavities. In particular, at a nominal BCS Qo˜7x108, simultaneous pulse operation of all three cavities in the cryomodule was achieved at accelerating gradients in excess of 12 MV/m. These conditions were maintained for several hours at a repetition rate of 30 pps. Details of the tests will be presented and discussed.