A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kuroda, Y.

Paper Title Page
WPAP018 Generation of Double-Decker Femtosecond Electron Beams in a Photoinjector 1604
 
  • J. Yang, K. Kan, T. Kondoh, T. Kozawa, Y. Kuroda, S. Tagawa, Y. Yoshida
    ISIR, Osaka
 
  The femtosecond electron beam is a practical source in the pump-probe experiment for studies of ultrafast physical/chemical reactions in materials, in which a mode-locked ultrashort laser light is used as a probe source. The synchronized time jitter between the electron beam and the laser light limits the time resolution in the experiment. In order to reduce the time jitter, a new concept of synchronized double-decker electron beam generation in a photoinjector was proposed. The double electron beams were observed in an S-band photocathode RF gun by injecting two laser beams which produced with a picosecond laser. The double electron beams were compressed into 400fs(rms) with a phase-space rotation technique in magnetic fields. The beams, which one is used as a pump source and another is used as a probe source, are expected for ultrafast reaction studies in femtosecond resolution.