A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kurkin, G.Y.

Paper Title Page
WPAT016 Stable Low Noise RF Source for Main Ring 1494
 
  • G.Y. Kurkin
    BINP SB RAS, Novosibirsk
  • P. Wang
    DU/FEL, Durham, North Carolina
 
  The Duke Storage ring is a 1 Gev electron ring, which is designed for driving UV-VUV FEL. It also provides variable energy high intensive gamma rays by Compton back scattering. It requires an RF master oscillator with very low phase noise. We built a Surface Acoustic Wave (SAW) Oscillator. However, the long-term stability does not meet requirements for FEL ring. Previously we used a commercial signal generator HP 4400B as the master oscillator. It has excellent long-term stability, but the phase noise is not acceptable. A phase feedback loop has been added between the SAW oscillator and the HP source, which provides us an excellent RF source. The design details and the test results are presented in this paper.  
WPAT017 Commissioning of the New RF System with the HOM Damped RF Cavity 1555
 
  • G.Y. Kurkin, V.S. Arbuzov, A. Bushuev, N. Gavrilov, E.I. Gorniker, E. Kenjebulatov, M.A. Kholopov, A.A. Kondakov, Ya.G. Kruchkov, S.A. Krutikhin, I.V. Kuptsov, L.A. Mironenko, N. Mityanina, S.V. Motygin, V.N. Osipov, V. Petrov, A.M. Pilan, A.M. Popov, E. Rotov, I. Sedlyarov, A.G. Tribendis, V. Volkov
    BINP SB RAS, Novosibirsk
  • S. Mikhailov, P.W. Wallace, P. Wang
    DU/FEL, Durham, North Carolina
 
  A new 178 MHz RF system has been commissioned at Duke Storage Ring. It consists of a 140 kW tetrode transmitter, a high order modes (HOM) damped RF cavity and the necessary frequency and voltage control electronics. The cavity walls are made of copper-on-stainless steel bimetal (8 mm Cu, 7 mm SS). The cavity has a larger beam pipe opening (700 mm in diameter) in the down-stream side, which allows the HOM propagating out of the cavity and being absorbed by the ceramic loads. The design details and the commissioning results are presented in this paper.  
FPAE061 Status of the Booster Injector for the Duke FEL Storage Ring 3544
 
  • S. Mikhailov, M.D. Busch, M. Emamian, J.F. Faircloth, S.M. Hartman, J. Li, V. Popov, G. Swift, V. Vylet, P.W. Wallace, P. Wang, Y.K. Wu
    DU/FEL, Durham, North Carolina
  • O. Anchugov, N. Gavrilov, G.Y. Kurkin, Yu. Matveev, D. Shvedov, N. Vinokurov
    BINP SB RAS, Novosibirsk
 
  Funding: This work is supported by U.S. DOE grant # DE-FG02-01ER41175 and by AFOSR MFEL grant # F49620-001-0370.

This paper presents the current status of the booster synchrotron for the Duke FEL storage ring. The booster will provide full energy injection into the storage ring in a wide energy range from 0.27 to 1.2 GeV. When operating the Duke FEL storage ring as the High Intensity Gamma Source (HIGS) to produce gamma photons above 20 MeV with Compton scattering, continuous electron loss occurs. The top-off mode operation of the booster injector will enable the continuous operation of the HIGS facility by replenishing the lost electrons. The design requirement for a compact booster with the single bunch extraction capability remains a challenge for the machine development. Presently, the booster project is in the installation phase. The magnetic elements, vacuum chambers, injection and extraction kickers have been fabricated in the Budker Institute of Nuclear Physics, Russia. The diagnostic and control system is being developed in the FEL lab, Duke University. The commissioning of the booster synchrotron is planned for fall 2005.

 
FPAT051 A New Timing System for the Duke Booster and Storage Ring 3159
 
  • G.Y. Kurkin
    BINP SB RAS, Novosibirsk
  • S.M. Hartman, S. Mikhailov, Y.K. Wu
    DU/FEL, Durham, North Carolina
  • I.P. Pinayev
    BNL, Upton, Long Island, New York
 
  Funding: AFOSR MFEL grant number is F49620-001-0370, HIGS Upgrade DOE grant number is DE-FG02-01ER41175.

A dedicated booster synchrotron is being constructed at the Duke FEL Laboratory to provide full energy injection into the main electron storage ring. A new timing system has been developed to coordinate the injection of electron bunches from the linac to the booster, the ramping of energy in the booster, and extraction of bunches into the main ring. The timing system will allow the extraction of any bunch in the booster into any selected bucket in the main ring to provide top-off injection for any of the various operational bunch patterns of the main ring. A new master oscillator has also been developed for the RF system of the booster. The oscillator may be tuned independently or phase-locked to the master oscillator of the main ring. The issues of the soft phase locking process of the new master oscillator are discussed. The timing system and new oscillator have been fabricated and tested and are ready for operation.