A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kozanecki, W.

Paper Title Page
MOPC006 Simulations and Experiments of Beam-Beam Effects in e+e- Storage Rings 520
 
  • Y. Cai, J. Seeman
    SLAC, Menlo Park, California
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • K. Ohmi, M. Tawada
    KEK, Ibaraki
 
  Funding: Work partially supported by the Department of Energy under Contract No. DE-AC02-76SF00515.

Over the past decade, extensive simulations of beam-beam effects in positron-electron collliders, based on the particle-in-cell method, were developed to explain many complex experimental observations. Recently, such simulations were used to predict the future luminosity performance of e+e- colliders. Some predictions have been proven to be correct in the existing accelerators. In this paper, many effects such as dynamic beta, beam-beam limit, crossing angle, parasitic collisions, betatron spectrum, and beam-beam lifetime, will be reviewed from the viewpoints of both simulation and experiment. Whenever possible, direct comparisons between the predictions of the simulation and the corresponding experimental results will be provided.

 
MPPE057 Measurement of the Vertical Emittance and Beta Function at the PEP-II Interaction Point Using the BaBar Detector 3387
 
  • J.M. Thompson, A. Roodman
    SLAC, Menlo Park, California
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
 
  Funding: U.S. Department of Energy.

We present measurements of the effective vertical emittance and IP beta function in the PEP-II Asymmetric B Factory. These beam parameters are extracted from fits to the longitudinal dependence of the luminosity and of the vertical luminous size, measured using e+ e- –> mu+ mu- events recorded in the Babar detector. The results are compared, for different sets of machine conditions, to accelerator-based measurements of the optical functions of the two beams.

 
TPAT076 Measurement of the Luminous-Region Profile at the PEP-II IP, and Application to e± Bunch-Length Determination 3973
 
  • B.F. Viaud
    Montreal University, Montreal, Quebec
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • I.V. Narsky
    CALTECH, Pasadena, California
  • C. O'Grady, A. Perazzo
    SLAC, Menlo Park, California
 
  The three-dimensional luminosity distribution at the interaction point (IP) of the SLAC B-Factory is measured continuously, using e+e- –> e+e- and e+e –> mu+mu- events reconstructed online in the silicon tracker of the BaBar detector. The centroid of the transverse luminosity profile provides a very precise and reliable monitor of medium- and long-term orbit drifts at the IP. The longitudinal centroid is sensitive to variations in the relative RF phase of the colliding beams, both over time and differentially along the bunch train. The measured horizontal r.m.s. width of the distribution is consistent with a sizeable dynamic-beta effect; it is also useful as a benchmark of strong-strong beam-beam simulations. The longitudinal luminosity distribution depends on the e± bunch lengths and vertical IP beta-functions, which can be different in the high- and low-energy rings. Using independent estimates of the beta-functions, we analyze the longitudinal shape of the luminosity distribution in the presence of controlled variations in accelerating RF voltage and/or beam current, to extract separate measurements of the e+ and e- bunch lengths.  
TPPP023 Simulation of PEP-II Accelerator Backgrounds Using TURTLE 1835
 
  • R.J. Barlow, H. Fieguth
    SLAC, Menlo Park, California
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • S.A. Majewski
    Stanford University, Stanford, Califormia
  • P. Roudeau, A. Stocchi
    LAL, Orsay
 
  We present studies of accelerator-induced backgrounds in the BaBar detector at the SLAC B-Factory, carried out using a modified version ofthe DECAY TURTLE simulation package. Lost-particle backgrounds in PEP-II are dominated by a combination of beam-gas bremstrahlung, beam-gas Coulomb scattering, radiative-Bhabha events and beam-beam blow-up. The radiation damage and detector occupancy caused by the associated electromagnetic shower debris can limit the usable luminosity. In order to understand and mitigate such backgrounds, we have performed a full programme of beam-gas and luminosity-background simulations, that include the effects of the detector solenoidal field, detailed modelling of limiting apertures in both collider rings, and optimization of the betatron collimation scheme in the presence of large transverse tails.  
TPPP024 Experimental Study of Crossing-Angle and Parasitic-Crossing Effects at the PEP-II e+e- Collider 1874
 
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • Y. Cai, J. Seeman, M.K. Sullivan
    SLAC, Menlo Park, California
  • I.V. Narsky
    CALTECH, Pasadena, California
 
  In a series of dedicated accelerator experiments, we have measured the dependence of the PEP-II luminosity performance on small horizontal crossing angles and on the horizontal separation at the first parasitic crossing. The experiment was carried out by varying the IP angle of one of the beams in two different bunch patterns, one with and one without parasitic crossings. The experimental measurements show satisfactory agreement with three-dimensional beam-beam simulations.  
TPPP025 Modeling Lost-Particle Accelerator Backgrounds in PEP-II Using LPTURTLE 1889
 
  • H. Fieguth, R.J. Barlow
    SLAC, Menlo Park, California
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
 
  Funding: Department of Energy Contract DE-AC02-76SF00515.

Background studies during the design, construction, commissioning, operation and improvement of BaBar and PEP-II have been greatly influenced by results from a program referred to as LPTURTLE (Lost Particle TURTLE a modified version of Decay TURTLE) which was originally conceived for the purpose of studying gas background for SLC. This venerable program is still in use today. We describe its use, capabilities and improvements and refer to current results now being applied to BaBar.

 
TPPP035 Performance of the PEP-II B-Factory Collider at SLAC 2369
 
  • J. Seeman, J. Browne, Y. Cai, S. Colocho, F.-J. Decker, M.H. Donald, S. Ecklund, R.A. Erickson, A.S. Fisher, J.D. Fox, S.A. Heifets, R.H. Iverson, A. Kulikov, N. Li, A. Novokhatski, M.C. Ross, P. Schuh, T.J. Smith, K.G. Sonnad, M. Stanek, M.K. Sullivan, P. Tenenbaum, D. Teytelman, J.L. Turner, D. Van Winkle, M. Weaver, U. Wienands, M. Woodley, Y.T. Yan, G. Yocky
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • C. Steier, A. Wolski
    LBNL, Berkeley, California
  • G. Wormser
    IPN, Orsay
 
  Funding: Work supported by DOE contract DE-AC02-76SF00515.

For the PEP-II Operation Staff: PEP-II is an asymmetric e+e- collider operating at the Upsilon 4S and has recently set several performance records. The luminosity has reached 9.2 x 1033/cm2/s. PEP-II has delivered an integrated luminosity of 710/pb in one day. It operates in continuous injection mode for both beams boosting the integrated luminosity. The peak positron current has reached 2.55 A in 1588 bunches. The total integrated luminosity since turn on in 1999 has reached 256/fb. This paper reviews the present performance issues of PEP-II and also the planned increase of luminosity in the near future to over 2 x 1034/cm2/s. Upgrade details and plans are discussed.

 
WPAE056 Geant4-Based Simulation Study of PEP-II Beam Backgrounds in the BaBar Detector at the SLAC B-Factory 3351
 
  • W.S. Lockman
    SCIPP, Santa Cruz, California
  • D. Aston, G.R. Bower, M. Cristinziani, H. Fieguth, D. H. Wright
    SLAC, Menlo Park, California
  • N.R. Barlow, C.L. Edgar
    Manchester University, Manchester
  • N.L. Blount, D. Strom
    University of Oregon, Eugene, Oregon
  • M. Bondioli
    INFN-Pisa, Pisa
  • G. Calderini
    UNIPI, Pisa
  • B. Campbell, S.H. Robertson
    CHEP, Montreal, Quebec
  • W. Kozanecki
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • B.A. Petersen
    Stanford University, Stanford, Califormia
 
  To improve the understanding of accelerator-induced backgrounds at the SLAC B-Factory and validate the proposed PEP-II luminosity upgrade, we simulate lost-particle backgrounds in the BaBar detector originating from beam-gas interactions and radiative-Bhabha scatters. To perform this study, we have extended the GEANT4-based BaBar detector simulation to include PEP-II beam-line components and magnetic fields up to 10m away from the interaction point. We first describe the simulation model and then compare predicted background levels with measurements from dedicated single-and colliding-beam experiments. Finally, we compare the simulated background levels in the current and the proposed luminosity-upgrade configurations.