A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Koseki, T.

Paper Title Page
TPPT013 Effect of HOM Couplers on the Accelerating Mode in the Damped Cavity at the Photon Factory Storage Ring 1339
 
  • T. Takahashi, M. Izawa, S. Sakanaka, K. Umemori
    KEK, Ibaraki
  • T. Koseki
    RIKEN/RARF/CC, Saitama
 
  Four damped cavities have been working very stably in the Photon Factory storage ring since 1997. The damped cavity has several trapped higher order modes (HOMs) with high Q values. Each frequency of these HOMs is detuned so as not to induce coupled-bunch instabilities. However, the frequency detuning method becomes less effective for a ring with a lower revolution frequency. Therefore, we have developed a HOM coupler that can reduce Q values of these trapped HOMs. The HOM coupler is a rod antenna type and located in the cylindrical wall of the cavity. Two or Three HOM couplers will be used for the cavity. The affect of these HOM couplers on the accelerating mode is investigated using MAFIA and the result is presented in this paper.  
TPPT049 Design and Cold Model Test of 500MHz Damped Cavity for ASP Storage Ring RF System 3076
 
  • J. Watanabe, K. Nakayama, K. S. Sato, H. Suzuki
    Toshiba, Yokohama
  • M. Izawa
    KEK, Ibaraki
  • A. Jackson, G. LeBlanc, K. Zingre
    ASP, Clayton, Victoria
  • T. Koseki
    RIKEN/RARF/CC, Saitama
  • N. Nakamura, H. Sakai, H. Takaki
    ISSP/SRL, Chiba
 
  TOSHIBA is constructing the storage ring RF system for the Australian Synchrotron Project(ASP). Two pairs of the 500MHz Higher Order Mode(HOM) damped cavities will be applied for this system. The cavities are modified KEK-PF type with silicon-carbide(SiC) microwave absorber and added three HOM anttenas for damping the longitudinal HOM impedance less than 20kOhm/GHz to meet requirement of ASP specification. The shunt impedance has been improved more than 5% in comparison with the original design by reducing the beam bore diameter without degrading HOM damping capability. The design of the cavity and the test results of an Al cold model are described.