A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kishiro, J.

Paper Title Page
MPPE043 The Status of Optics Design and Beam Dynamics Study in J-PARC RCS 2759
 
  • F. Noda, N. Hayashi, H. Hotchi, J. Kishiro, P.K. Saha, Y. Shobuda, K. Yamamoto
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Machida, A.Y. Molodojentsev
    KEK, Ibaraki
 
  The 3GeV RCS at J-PARC is designed to provide proton beam of 3GeV and a goal of output beam power is 1MW. The beam commissioning starts on May 2007. At present, more qualitative studies concerning beam dynamics are in progress: core beam handlings, halo beam handlings, instabilities and so on. In this paper, the RCS optics design and the present status of beam dynamics studies are summarized.  
MPPE004 Evaluation of Nonlinear Effects in the 3GeV Rapid Cycling Synchrotron of J-PARC 916
 
  • H. Hotchi, F. Noda, N. Tani
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • J. Kishiro, S. Machida, A.Y. Molodojentsev
    KEK, Ibaraki
 
  In order to accelerate an ultra-high intense beam with small particle losses, the 3GeV Rapid Cycling Synchrotron (RCS) of J-PARC, which is being constructed at JAERI, has a large acceptance. In this case the nonlinearity associated with the motion of particles at large amplitude and large momentum deviation plays a significant role. The sources of nonlinear magnetic fields in RCS are mainly connected with the fringe of the main dipole and quadrupole magnets and with the sextupole magnets used for the linear chromaticity correction. In this paper, we will present simulation results including such nonlinear effects. In addition, the possible correction scheme for the induced transverse resonances will be discussed.  
TOAD003 Development of the Beam Diagnostics System for the J-PARC Rapid-Cycling Synchrotron 299
 
  • N. Hayashi, S.H. Hiroki, J. Kishiro, Y.T. Teruyama, R. Toyokawa
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • D.A. Arakawa, S. Lee, T. Miura, T. Toyama
    KEK, Ibaraki
 
  Development of the beam diagnostics system for the J-PARC (Japan Proton Accelerator Research Complex) Rapid-Cycling Synchrotron is described. The system consists of Beam Position Monitor (BPM), Beam Loss Monitor (BLM), Current monitors (DCCT, SCT, MCT, FCT, WCM), Tune meter system, 324MHz-BPM, Profile monitor, and Halo monitor. BPM electrode is electro-static type and its electronics is designed for both COD and turn-by-turn measurements. Five current monitors have different time constants in order to cover wide frequency range. The tune meter is consisted of RFKO and the beam pick-up electrode. For the continuous injected beam monitoring, 324MHz-BPM detects Linac frequency. Two types of profile monitor are multi-wire for low intensity tuning and the residual gas monitor for non-destructive measurement.  
RPAT005 Beam Diagnostics for the J-PARC Main Ring Synchrotron 958
 
  • T. Toyama, D.A. Arakawa, Y. Hashimoto, S. Lee, T. Miura, S. Muto
    KEK, Ibaraki
  • N. Hayashi, J. Kishiro, R. Toyokawa
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
  Beam diagnostics: beam intensity monitors (DCCT, SCT, FCT, WCM), beam position monitors (ESM), beam loss monitors (proportional chamber, air ion chamber), beam profile monitors (secondary electron emission, gas-sheet) have been designed, tested, and will be installed for the Main Ring synchrotron of J-PARC (Japan Proton Accelerator Research Complex). This paper describes the basic design principle and specification of each monitor, with a stress on how to cope with high power beam (average circulation current of ~12 A) and low beam loss operation (less than 1 W/m except a collimator region). Some results of preliminary performance test using present beams and a radiation source will be reported.  
TPPT014 Induction System for a Proton Bunch Acceleration in Synchrotron 1398
 
  • K. Torikai, Y.A. Arakida, J. Kishiro, T. Kono, E. Nakamura, Y. Shimosaki, K. Takayama, T. Toyama, M. Wake
    KEK, Ibaraki
 
  Funding: The project is officially supported by Grant-In-Aid for Creative Scientific Research (KAKENHI 15GS0217, 5 years term).

An induction cavity capable of operating at a repetition rate of 1MHz with a 50% duty has been built and employed for the first induction acceleration of a proton bunch from 500MeV to 8GeV in the KEK-PS.* In this experiment, an acceleration voltage of 4.7kV and an repetition frequency of 667kHz-882kHz were required. The installed induction device consists of three induction cells, each of which can generate a bipolar induction voltage of a maximum output voltage of 2 kV with a flat-top of 300ns and a 25ns rising/falling time. Electrical characteristics of the cavity itself, such as inductance, capacitance, and resistance, have been evaluated in three independent ways: (1) excitation due to a small signal from a network analyzer, (2) excitation by a proton beam as a primary driver, (3) excitation with a actual pulse modulator in an entire system. This paper will compare these results as well as theoretical design values. A general design procedure for an induction acceleration cavity will be given.

*K.Takayama et al., submitted to Phys. Rev. Lett. http://www.arxiv.org/pdf/physics/0412006.

 
FPAE020 Induction Acceleration of a Single RF Bunch in the KEK PS 1679
 
  • K. Takayama, D.A. Arakawa, Y.A. Arakida, S. Igarashi, T. Iwashita, T. Kono, E. Nakamura, M. Sakuda, H. Sato, Y. Shimosaki, M.J. Shirakata, T. Sueno, K. Torikai, T. Toyama, M. Wake, I. Yamane
    KEK, Ibaraki
  • K. Horioka
    TIT, Yokohama
  • A.K. Kawasaki, A. Tokuchi
    NICHICON, Shiga
  • J. Kishiro
    JAERI/LINAC, Ibaraki-ken
  • K. Koseki
    GUAS/AS, Ibaraki
  • M.S. Shiho
    JAERI/NAKA, Ibaraki-ken
  • M. Watanabe
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
  A single bunch trapped in an RF bucket was accelerated by induction devices from 500 MeV to 8GeV beyond transition energy in the KEK-PS. This is the first demonstration of induction acceleration in a high energy circular ring. The acceleration was confirmed by measuring a temporal evolution of the RF phase through an entire acceleration.* Key devices in an induction acceleration system are an induction accelerating cavity capable of generating an induced voltage of 2kV/cell, a pulse modulator to drive the cavity (switching driver), and a DSP system to control gate signals for switching. Their remarkable characteristics are its repetition ratio of about 1MHz and duty factor of 50%. All devices have been newly developed at KEK so as to meet this requirement. The pulse modulator employing MOSFETs as switching elements is connected with the accelerating cavity through a long transmission cable in order to avoid a high-dose irradiation in the accelerator tunnel. The induction system has been running beyond more than 24 hours without any troubles. The paper will take an introductive role for related other 6 papers too, which describe more technical aspects and novel beam physics associated with the induction acceleration.

*K.Takayama et al., submitted to Phys. Rev. Lett., http://www.arxiv.org/pdf/physics/0412006.