A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kirby, N.A.

Paper Title Page
RPAT078 Bunch Length Measurements Using Coherent Radiation 4027
 
  • R. Ischebeck, C.D. Barnes, I. Blumenfeld, F.-J. Decker, M.J. Hogan, R.H. Iverson, P. Krejcik, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • C.E. Clayton, C. Huang, D.K. Johnson, W. Lu, K.A. Marsh
    UCLA, Los Angeles, California
  • S. Deng, E. Oz
    USC, Los Angeles, California
  • N.A. Kirby
    Stanford University, Stanford, Califormia
 
  Funding: Work supported by Department of Energy contracts DE-AC02-76SF00515 (SLAC), DE-FG03-92ER40745, DE-FG03-98DP00211, DE-FG03-92ER40727, DE-AC-0376SF0098, and National Science Foundation grants No. ECS-9632735, DMS-9722121 and PHY-0078715.

The accelerating field that can be obtained in a beam-driven plasma wakefield accelerator depends on the current of the electron beam that excites the wake. In the E-167 experiment, a peak current above 10kA will be delivered at a particle energy of 28GeV. The bunch has a length of a few ten micrometers and several methods are used to measure its longitudinal profile. Among these, autocorrelation of coherent transition radiation (CTR) is employed. The beam passes a thin metallic foil, where it emits transition radiation. For wavelengths greater than the bunch length, this transition radiation is emitted coherently. This amplifies the long-wavelength part of the spectrum. A scanning Michelson interferometer is used to autocorrelate the CTR. However, this method requires the contribution of many bunches to build an autocorrelation trace. The measurement is influenced by the transmission characteristics of the vacuum window and beam splitter. We present here an analysis of materials, as well as possible layouts for a single shot CTR autocorrelator.