A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kinsho, M.

Paper Title Page
WPAE012 Gamma-Ray Irradiation Experiments of Collimator Key Components for the 3GeV-RCS of J-PARC 1309
 
  • M. Kinsho, F. Masukawa, N. Ogiwara, O. Takeda, K. Yamamoto
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • J. Kusano
    Japan Atomic Energy Institute, Linac Laboratory, Tokai-Mura
 
  The turbo molecular pump and the stepping motor which can be operated exposed to high radiation has been under development at JAERI for use in the 3GeV-RCS of the J-PARC. In order to determine the extent of radiation damage to those instruments, gamma-ray irradiation testing was performed at JAERI. It was succeed that the turbo molecular pump and stepping motor could operate properly when given an absorption dose more than 15 MGy in a gamma-ray irradiation environment.  
WPAE013 Development of the Collimator System for the 3GEV Rapid Cycling Synchrotron 1365
 
  • K. Yamamoto
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • M. Kinsho
    Japan Atomic Energy Institute, Linac Laboratory, Tokai-Mura
 
  In order to localize the beam loss in the restricted area, the beam collimation system is prepared in the 3GeV Rapid Cycling Synchrotron (RCS) of the Japan Proton Accelerator Complex (J-PARC) Project. The amount of the localized beam loss on the one collimator is estimated about 1.2kW, and that loss generates a large quantity of the secondary radiations. So the beam collimator must be designed that it is covered with enough shielding. We calculated the radiation level of the collimator and decided necessary shielding thickness. This result indicated that the residual dose rate at the outside surface of the shielding is mostly under 1mSv/h. We developed the remote cramp system and rad-hard components in order to reduce the radiation exposure during maintenance of the collimator. And also we coated Titanium Nitride (TiN) film on the inside surface of the vacuum chamber in order to reduce the secondary electron emission from the collimator and chamber surface. Now we investigate the possibility of another coating.  
RPPE039 Alumina Ceramics Vacuum Duct for the 3GeV-RCS of the J-PARC 2604
 
  • M. Kinsho
    Japan Atomic Energy Institute, Linac Laboratory, Tokai-Mura
  • Z. Kabeya
    MHI, Nagoya
  • N. Ogiwara
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • Y. Saito
    KEK, Ibaraki
 
  It was success to develop alumina ceramics vacuum ducts for the 3GeV-RCS of J-PARC at JAERI. There are two types of alumina ceramics vacuum ducts needed, one being 1.5m-long duct with a circular cross section for use in the quadrupole magnet, the other being 3.5m-long and bending 15 degrees, with a race-track cross section for use in the dipole magnet. These ducts could be manufactured by joining several duct segments of 0.5-0.8 m in length by brazing. The alumina ceramics ducts have copper stripes on the outside surface of the ducts to reduce the duct impedance. One of the ends of each stripe is connected to a titanium flange by way of a capacitor so to interrupt an eddy current circuit. The copper stripes are produced by an electroforming method in which a stripe pattern formed by Mo-Mn metallization is first sintered on the exterior surface and then overlaid by PR-electroformed copper (Periodic current Reversal electroforming method). In order to reduce emission of secondary electrons when protons or electrons strike the surface, TiN film is coated on the inside surface of the ducts.