A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kim, Y.-H.

Paper Title Page
TPPT017 Fabrication and Test of the Drift Tubes for PEFP 20 MeV DTL 1552
 
  • Y.-H. Kim, Y.-S. Cho, H.-J. Kwon, M.-Y. Park
    KAERI, Daejon
 
  Funding: This work is supported by the 21C Frontier R&D program in the Ministry of Science and Technology of the Korean government.

Drift tubes of PEFP (Proton Engineering Frontier Project) 20MeV DTL contain electro-quadrupole magnet composed of commercial enamel wire cooled with water coolant. Those were fabricated through the process of brazing, assembling, electron-beam welding, and post-machining. During the e-beam welding, temperature increase was kept under 50 degree to protect the EQM wire from thermal damage. We performed several tests such as vacuum leak test, hydraulic test, and electrical test. EQM properties such as effective length, magnetic saturation, and offset between magnetic center and geometric center of DT were measured and recorded also.

 
FPAE044 Test Results of the PEFP 3MeV RFQ Upgrade 2842
 
  • Y.-S. Cho, S.-H. Han, J.-H. Jang, H.-S. Kim, Y.-H. Kim, H.-J. Kwon, M.-Y. Park, K.T. Seol
    KAERI, Daejon
 
  Funding: This work is supported by the 21C Frontier R&D program in the Ministry of Science and Technology of the Korean government.

A 3MeV RFQ upgrade for 100MeV proton accelerator has been fabricated at PEFP (Proton Engineering Frontier Project). The tuning of the cavity was carried out before and after the brazing to meet the condition that the quadrupole field profile is within 1% of design value and dipole component is less than 1% of quadrupole one. The ancillary system such as high power RF including klystron power supply and cooling system were already tested up to operating level. Therefore, the main issues of the tests were cavity conditioning up to full power level and low duty beam test. After the completion of the beam test of RFQ itself, the 20MeV DTL which has been tested independently will be carried out. In this paper, the test results of the PEFP 3MeV RFQ upgrade including high power conditioning and low duty beam acceleration are presented.

 
FPAE045 Design of the PEFP MEBT 2881
 
  • J.-H. Jang, Y.-S. Cho, Y.-H. Kim, H.-J. Kwon
    KAERI, Daejon
 
  Funding: This work is supported by the 21C Frontier R&D program in the Ministry of Science and Technology of the Korean government.

A MEBT system of the PEFP(Proton Engineering Frontier Project) has to be installed after the 20MeV DTL where the beam will be supplied to the user group through a beam extraction system. Until now we don't have a plan to put in some matching devices between the RFQ and 20MeV DTL except using the four quadrupole magnets in the first DTL tank as transverse matching tools. The MEBT plays the key role to match the 20MeV output beam into the next accelerator in the longitudinal direction as well as transverse one. This report shows the basic concept and the design status of the system.

 
FPAE046 Initial Test of the PEFP 20MeV DTL 2917
 
  • H.-S. Kim, Y.-S. Cho, S.-H. Han, J.-H. Jang, Y.-H. Kim, H.-J. Kwon, M.-Y. Park, K.T. Seol
    KAERI, Daejon
  • Y.-S. Hwang
    SNU, Seoul
 
  Funding: This work is supported by the 21C Frontier R&D program in the Ministry of Science and Technology of the Korean government.

A conventional 20MeV drift tube linac (DTL) for the Proton Engineering Frontier Project (PEFP) has been developed as a low energy section of 100MeV accelerator. The machine consists of four tanks with 152 cells supplied with 900kW RF power from 350MHz klystron through the ridge-loaded waveguide coupler. We assembled the fabricated accelerator components and aligned each part with care. We have also prepared the subsystems for the test of the DTL such as RF power delivery system, high voltage DC power supply, vacuum system, cooling system, measurements and control system and so on. The detailed description of the initial test setup and preliminary test results will be given in this paper.

 
FPAE047 Test Scheme Setup for the PEFP 20MeV DTL 2965
 
  • H.-S. Kim, Y.-S. Cho, Y.-H. Kim, H.-J. Kwon, K.T. Seol
    KAERI, Daejon
  • Y.-S. Hwang
    SNU, Seoul
 
  Funding: This work is supported by the 21C Frontier R&D program in the Ministry of Science and Technology of the Korean government.

A 100MeV proton accelerator is under development for the Proton Engineering Frontier Project (PEFP). The goal of the first stage of the project is to develop a 20MeV accelerator and the initial test of the 20MeV accelerator will be made. The DTL of 20 MeV accelerator consists of four tanks and will be driven with single klystron, which gives rise to some unique problems with regard to the way of independent resonance control for each tank. Some changes made in the LLRF for reducing phase or amplitude error of cavities affect all of four tanks simultaneously, for which it is not possible to use LLRF for individual control of phase and amplitude of each tank. For independent control of each tank, we are going to use the temperature control of the drift tubes as a frequency tuner. During the initial test of the DTL, the phase of each tank will be synchronized with the first tank phase, and beam based test will be performed as if all of tanks were single unit. The detailed description of the test scheme and the analysis results will be given in this paper.

 
FPAE048 Fabrication of the PEFP 3MeV RFQ Upgrade 3010
 
  • H.-J. Kwon, Y.-S. Cho, J.-H. Jang, H.-S. Kim, Y.-H. Kim
    KAERI, Daejon
 
  Funding: This work is supported by the 21C Frontier R&D program in the Ministry of Science and Technology of the Korean government.

A 100MeV proton accelerator has been developed at PEFP (Proton Engineering Frontier Project) as a 21C Frontier Project. The goal of the first stage of the project is to develop a 20MeV accelerator. The 20MeV accelerator consists of ion source, LEBT, 3MeV RFQ and 20MeV DTL. The 3MeV RFQ was already installed and being tested. During preliminary test, some problems, such as the resonant frequency and field profile tuning, sharp edge in the vane end, inadequate RF seals have been found out. Therefore, it was decided to fabricate another RFQ. The RFQ upgrade includes some characteristics such as constant voltage profile, adoption of transition cell which are different from present one. In this paper, the fabrication of the PEFP 3MeV RFQ upgrade are presented.