A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kikuchi, T.

Paper Title Page
FPAT042 Beam Dynamics and Pulse Duration Control During Final Beam Bunching in Driver System for Heavy Ion Inertial Fusion 2735
 
  • T. Kikuchi, S. Kawata, T. Someya
    Utsunomiya University, Utsunomiya
  • K. Horioka, M. Nakajima
    TIT, Yokohama
  • T. Katayama
    CNS, Saitama
 
  Beam dynamics is investigated by multi-particle simulations during a final beam bunching in a driver system for heavy ion inertial fusion (HIF). The longitudinal bunch compression causes the beam instability induced by the strong space charge effect. The multi-particle simulation can indicate the emittance growth due to the longitudinal bunch compression. Dependence in the beam pulse duration is also investigated for effective pellet implosion in HIF. Not only the spatial nonuniformity of the beam illumination, but also the errors of the beam pulse duration cause changes of implosion dynamics. The allowable regime of the beam pulse duration for the effective fusion output becomes narrow with decreasing the input beam energy. The voltage accuracy requirement at the beam velocity modulator is also estimated for the final beam bunching. It is estimated that the integrated voltage error is allowable as a few percent.  
FPAT043 Application of Selected Momentum Correction Method Using Induction Voltage Modulator 2762
 
  • T. Kikuchi, S. Kawata
    Utsunomiya University, Utsunomiya
  • K. Horioka
    TIT, Yokohama
  • T. Katayama
    CNS, Saitama
 
  A method for momentum correction of a selected beam particle using a controllable induction voltage modulator is proposed for a low flux ion beam. The corrected ion beam has a small momentum error restricted by a detection error at a kinetic energy analyzer and a voltage fluctuation at the induction voltage modulator. The application of this selected momentum correction scheme is discussed by using numerical simulations.