A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kiggans, J. O.

Paper Title Page
TPPE016 ISOL Targets Prepared with a New Paint Infiltration Coating Method 1508
 
  • Y. Kawai, G. Alton, J. O. Kiggans, D.W. Stracener
    ORNL, Oak Ridge, Tennessee
 
  Funding: Research at ORNL is supported by the U.S. DOE under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

A new infiltration paint coating method has been developed for fabricating ISOL targets for radioactive ion beam applications. The technique has been shown to be inexpensive, fast, and almost universal for the uniform deposition of many refractory target materials onto the interior surfaces of complex geometry matrices, such as Reticulated-Vitreous-Carbon-Foam (RVCF). The process yields robust, highly permeable targets with fast diffusion and release properties. We demonstrate the viability of the technique for coating forms of RVCF compressed by factors of 6 and 10 with materials to form targets for use at high energy facilities such as RIA. The use of compressed RVCF, coated with an optimum thickness of target material, reduces target lengths to practical values, while preserving high permeability. We calculate thermal conductivities and diffusion for various targets on 6xRVCF and 10xRVCF.