A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kamps, T.

Paper Title Page
WPAP007 Status of the 3½ Cell Superconducting RF Gun Project in Rossendorf 1081
 
  • R. Xiang, H. Buettig, P. Evtushenko, D. Janssen, U. Lehnert, P. Michel, K. Moeller, Ch. Schneider, R. Schurig, F. Staufenbiel, J. Teichert
    FZR, Dresden
  • T.  Kamps, D. Lipka
    BESSY GmbH, Berlin
  • W.-D. Lehmann
    IfE, Dresden
  • J. Stephan
    IKST, Drsden
  • V. Volkov
    BINP SB RAS, Novosibirsk
  • I. Will
    MBI, Berlin
 
  In the paper, we report on the status and progress of the superconducting rf gun project in Rossendorf. The gun is designed for cw operation mode with 1mA current and 10 MeV electron energy. The gun will be installed at the ELBE superconducting electron linear accelerator. It will have a 3½ cell niobium cavity operating at 1.3 GHz. The cavity consists of three cells with TESLA geometry and a specially designed half-cell in which the photocathode will be placed. Two Nb cavities, with RRR 300 and 40 respectively, will be finished at the beginning of 2005. After delivery, the rf tests will be performed and the treatment of the cavities will be started. At the same time, the design of the cryostat is finished and the fabrication of its components is under way. Further activities are the design of the diagnostic beam line, the assembling of the new photocathode preparation system, and the upgrade of the 262 nm driver laser system.  
RPAT083 Beam Profile Measurements and Simulations of the PETRA Laser-Wire 4123
 
  • J. Carter, I.V. Agapov, G.A. Blair, G.E. Boorman, C.D. Driouichi, F. Poirier, M.T. Price
    Royal Holloway, University of London, Surrey
  • K. Balewski, H.-C. Lewin, S. Schreiber, K. Wittenburg
    DESY, Hamburg
  • S.T. Boogert, S. Malton
    UCL, London
  • N. Delerue, D.F. Howell
    OXFORDphysics, Oxford, Oxon
  • T.  Kamps
    BESSY GmbH, Berlin
 
  The laser-wire will be an essential diagnostic tool at the International Linear Collider and advanced light sources. It uses a finely focussed laser beam to measure the transverse profile of electron bunches by detecting the Compton-scattered photons (or electrons) downstream of where the laser beam intersects the electron beam. Such a system has been installed at the PETRA storage ring at DESY, which uses a piezo-driven mirror to scan the laser light across the electron beam. Latest experimental results are presented and compared to detailed simulations using Geant4.