A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kahn, S.A.

Paper Title Page
MPPT057 Design of a Magnet System for a Muon Cooling Ring 3366
 
  • S.A. Kahn, H.G. Kirk
    BNL, Upton, Long Island, New York
  • D. Cline, A.A. Garren
    UCLA, Los Angeles, California
  • F.E. Mills
    Fermilab, Batavia, Illinois
 
  Funding: This work was performed with the support of the U.S. DOE under Contract No. DE-AC02-98CH10886.

A hydrogen gas filled muon cooling ring appears to be a promising approach to reducing the emittance of a muon beam for use in a neutrino factory or a muon collider. A small muon cooling ring is being studied to test the feasibility of cooling by this method. This paper describes the magnet system to circulate the muons. The magnet design is optimized to produce a large dynamic aperture to contain the muon beam with minimum losses. Muons are tracked through the field to verify the design.

 
TPPP048 A Compact 6D Muon Cooling Ring 3025
 
  • H.G. Kirk, S.A. Kahn
    BNL, Upton, Long Island, New York
  • D. Cline, A.A. Garren
    UCLA, Los Angeles, California
  • F.E. Mills
    Fermilab, Batavia, Illinois
 
  Funding: U.S. Department of Energy.

We discuss a conceptual design for a compact muon cooling system based on a weak-focusing ring loaded with high-pressure Hydrogen gas. We demonstrate that such a ring will be capable of cooling a circulating muon beam in each of the three spatial dimensions so that 6d cooling of the muon beam phase space is achieved.

 
RPPE031 Target and Horn Cooling for the Very Long Baseline Neutrino Experiment 2209
 
  • S. Bellavia, S.A. Kahn, H.G. Kirk, H. Ludewig, D. Raparia, N. Simos
    BNL, Upton, Long Island, New York
 
  Funding: This work is performed under the auspices of the US DOE.

Thermodynamic studies have been performed for the beam target and focusing horn system to be used in a very long baseline neutrino oscillation experiment. A 2mm rms beam spot with power deposition of over 18 KW presents challenging material and engineering solutions to this project. Given that the amount of heat transferred by radiation alone from the target to the horn is quite small, the primary mechanism is heat removal by forced convection in the annular space between the target and the horn. The key elements are the operating temperature of the target, the temperature of the cooling fluid and the heat generation rate in the volume of the target that needs to be removed. These working parameters establish the mass flow rate and velocity of the coolant necessary to remove the generated heat. Several cooling options were explored using a carbon-carbon target and aluminum horn. Detailed analysis, trade studies and simulations were performed for cooling the horn and target with gaseous helium as well as water.

 
RPPT059 Spectrum from the Proposed BNL Very Long Baseline Neutrino Facility 3476
 
  • S.A. Kahn, M. Diwan
    BNL, Upton, Long Island, New York
 
  Funding: The work was performed with the support of the U.S. DOE under Contract No. DE-AC02-98CH10886.

This paper calculates the neutrino flux that would be seen at the far detector location from the proposed BNL Very Long Baseline Neutrino Facility. The far detector is assumed to be located at an underground facility in South Dakota 2540 km from BNL. The neutrino beam facility uses a 1 MW upgraded AGS to provide an intense proton beam on the target and a magnetic horn to focus the secondary pion beam. The paper will examine the sensitivity of the neutrino flux at the far detector to the positioning of the horn and target so as to establish alignment tolerances for the neutrino system.

 
RPPT067 A High-Power Target Experiment 3745
 
  • H.G. Kirk, S.A. Kahn, H. Ludewig, R. Palmer, V. Samulyak, N. Simos, T. Tsang
    BNL, Upton, Long Island, New York
  • J.R.J. Bennett
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • T.W. Bradshaw, P. Drumm, T.R. Edgecock, Y. Ivanyushenkov
    CCLRC/RAL, Chilton, Didcot, Oxon
  • I. Efthymiopoulos, A. Fabich, H. Haseroth, F. Haug, J. Lettry
    CERN, Geneva
  • T.A. Gabriel, V.B. Graves, J.R. Haines, P.T. Spampinato
    ORNL, Oak Ridge, Tennessee
  • Y. Hayato, K. Yoshimura
    KEK, Ibaraki
  • K.T. McDonald
    PU, Princeton, New Jersey
 
  Funding: U.S. Department of Energy.

We describe an experiment designed as a proof-of-principle test for a target system capable of converting a 4 MW proton beam into a high-intensity muon beam suitable for incorporation into either a neutrino factory complex or a muon collider. The target system is based on exposing a free mercury jet to an intense proton beam in the presence of a high strength solenoidal field.