A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Joshi, C.

Paper Title Page
TPAE024 Determination of Longitudinal Phase Space in SLAC Main Accelerator Beams 1856
 
  • C.D. Barnes, F.-J. Decker, P. Emma, M.J. Hogan, R.H. Iverson, P. Krejcik, C.L. O'Connell, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • C.E. Clayton, C. Huang, D.K. Johnson, C. Joshi, W. Lu, K.A. Marsh
    UCLA, Los Angeles, California
  • S. Deng, T.C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  In the E164 Experiment at that Stanford Linear Accelerator Center (SLAC), we seek to drive plasma wakes for electron acceleration using 28.5 GeV bunches from the main accelerator. These bunches can now be made with an RMS length of less than 20 microns, and direct measurement is not feasible. Instead, we use an indirect technique, measuring the energy spectrum at the end of the linac and comparing with detailed simulations of the entire machine. We simulate with LiTrack, a 2D code developed at SLAC which includes wakefields, synchrotron radiation and all second order optical aberrations. Understanding the longitudinal profile allows a better understanding of acceleration in the plasma wake, as well as investigation of possible destructive transverse effects. We present results from the July 2004 experimental run and show how this technique aids in data analysis. We also discuss accuracy and validation of phase space determinations.  
TPAE025 Field Ionization of Neutral Lithium Vapor using a 28.5 GeV Electron Beam 1904
 
  • C.L. O'Connell, C.D. Barnes, F.-J. Decker, M.J. Hogan, R.H. Iverson, P. Krejcik, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • C.E. Clayton, C. Huang, D.K. Johnson, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • S. Deng, T.C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  The E164/E164X plasma wakefield experiment studies beam-plasma interactions at the Stanford Linear Acceleration Center (SLAC). Due to SLAC recent ability to variably compress bunches longitudinally from 650 microns down to 20 microns, the incoming beam is sufficiently dense to field ionize the neutral Lithium vapor. The field ionization effects are characterized by the beam’s energy loss through the Lithium vapor column. Experimental results are presented.  
TPAE038 Particle-in-Cell Simulation of LWFA Using 50 fs Pulses in Guided and Unguided Plasmas
 
  • F.S. Tsung, R. Fenseca, C. Joshi, W. Lu, W.B. Mori, L.O. Silva, M. Tzoufras
    UCLA, Los Angeles, California
 
  Funding: Work supported by DOE and NSF.

In 2004, we reported on 3D simulation results that using a modest laser, it was possible to generate a ~250 MeV monoenergetic beam with .5 nC of charge and to generate a few .8GeV electrons (Tsung et al, Phys. Rev. Lett., 93, 185002). We found that the self-injected electrons originated only after the laser distorted from a combination of photon deceleration and longitudinal group velocity dispersion and these electrons originated from the edge of the laser. We also observed that the mono-energetic nature arose due to phase space rotation and beam loading. In the September, 30, 2004 issue of Nature, many experimental groups have reported the observation of mono-energetic beams of electrons in the range of 100 MeV. These experiments have been performed for a range of plasma parameters. We have begun to systematically study (in 2 and 3D) the acceleration mechanisms for plasma conditions under which these experiments operated to verify that what we observed in our simulations is universal. Our 3D simulation of the experiment by Mangles et al produced excellent agreement in electron energy spectrum and we have begun to look at the other two experiments reported in Nature.

 
TPAE041 Modeling TeV Class Plasma Afterburners 2666
 
  • C. Huang, C.E. Clayton, D.K. Johnson, C. Joshi, W. Lu, W.B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • C.D. Barnes, F.-J. Decker, M.J. Hogan, R.H. Iverson
    SLAC, Menlo Park, California
  • S. Deng, T.C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  Funding: Work supported by DOE and NSF.

Plasma wakefield acceleration can sustain acceleration gradients three orders of magnitude larger than conventional RF accelerator. In the recent E164X experiment, substantial energy gain of about 3Gev has been observed. Thus, a plasma afterburner, which has been proposed to double the incoming beam energy for a future linear collider, is now of great interest. In an afterburner, a particle beam drives a plasma wave and generates a strong wakefield which has a phase velocity equal to the velocity of the beam. This wakefield can then be used to accelerate part of the drive beam or a trailing beam. Several issues such as the efficient transfer of energy and the stable propagation of both the drive and trailing beams in the plasma are critical to the afterburner concept. We investigate the nonlinear beam-plasma interaction in such scenario using the 3D computer modeling code QuickPIC. We will report the latest simulation results of both 50 GeV and 1 TeV plasma afterburner stages for electrons including the beam-loading of a trailing beam. Analytic analysis of hosing instability in this regime will be presented.

 
TPAE042 Beam Matching to a Plasma Wake Field Accelerator Using a Ramped Density Profile at the Plasma Boundary 2702
 
  • K.A. Marsh, C.E. Clayton, C. Huang, D.K. Johnson, C. Joshi, W. Lu, W.B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • C.D. Barnes, F.-J. Decker, M.J. Hogan, R.H. Iverson, P. Krejcik, C.L. O'Connell, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • S. Deng, T.C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  Funding: DOE Grant No. DE-FG03-92ER40727.

An important aspect of plasma wake field accelerators (PWFA) is stable propagation of the drive beam. In the under dense regime, the drive beam creates an ion channel which acts on the beam as a strong thick focusing lens. The ion channel causes the beam to undergo multiple betatron oscillations along the length of the plasma. There are several advantages if the beam size can be matched to a constant radius. First, simulations have shown that instabilities such as hosing are reduced when the beam is matched. Second, synchrotron radiation losses are minimized when the beam is matched. Third, an initially matched beam will propagate with no significant change in beam size in spite of large energy loss or gain. Coupling to the plasma with a matched radius can be difficult in some cases. This paper shows how an appropriate density ramp at the plasma entrance can be useful for achieving a matched beam. Additionally, the density ramp is helpful in bringing a misaligned trailing beam onto the drive beam axis. A plasma source with boundary profiles useful for matching has been created for the PWFA experiments at SLAC.

 
TPAE043 Production of Terahertz Seed Radiation for FEL/IFEL Microbunchers for Second Generation Plasma Beatwave Experiments at Neptune 2780
 
  • J.E. Ralph, C. Joshi, J.B. Rosenzweig, C. Sung, S. Tochitsky
    UCLA, Los Angeles, California
 
  Funding: This work was supported by the DOE Contract No. DE-FG03-92ER40727.

To achieve phase locked injection of short electron bunches in a plasma beatwave accelerator, the Neptune Laboratory will utilize microbunching in an FEL or IFEL system. These systems require terahertz (THz) seed radiation on the order of 10 kW for the FEL and 10 MW for the IFEL bunchers. We report results of experiments on THz generation using nonlinear frequency mixing of CO2 laser lines in GaAs. A two-wavelength laser beam was split and sent onto a 2.5 cm long GaAs crystal cut for noncollinear phase matching. Low power measurements achieved ~1 W of 340 ?m radiation using 200 ns CO2 pump pulses with wavelengths 10.3?m and 10.6?m. We also demonstrated tunability of difference frequency radiation, producing 240?m by mixing two different CO2 laser lines. By going to shorter laser pulses and higher intensities, we were able to increase the conversion efficiency while decreasing the surface damage threshold. Using 200ps pulses we produced ~2 MW of 340 ?m radiation. Future studies in this area will focus on developing large diameter Quasi-Phase matched structures for production of high power THz radiation.

 
TPAE044 Terahertz IFEL/FEL Microbunching for Plasma Beatwave Accelerators 2812
 
  • C. Sung, C.E. Clayton, C. Joshi, P. Musumeci, C. Pellegrini, J.E. Ralph, S. Reiche, J.B. Rosenzweig, S. Tochitsky
    UCLA, Los Angeles, California
 
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-FG03-92ER40727.

In order to obtain monoenergetic acceleration of electrons, phase-locked injection using electron microbunches shorter than the accelerating structure is necessary. For a laser-driven plasma beatwave accelerator experiment, we propose to microbunch the electrons by interaction with terahertz (THz) radiation in an undulator via two mechanisms– free electron laser (FEL) and inverse free electron laser (IFEL). Since the high power FIR radiation will be generated via difference frequency mixing in GaAs by the same CO2 beatwave used to drive the plasma wave, electrons could be phase-locked and pre-bunched into a series of microbunches separated with the same periodicity. Here we examine the criteria for undulator design and present simulation results for both IFEL and FEL approaches. Using different CO2 laser lines, electrons can be microbunched with different periodicity 300 – 100 mm suitable for injection into plasma densities in the range 1016 – 1017 cm-3, respectively. The requirement on the THz radiation power and the electron beam qualities are also discussed.

 
TPAE046 Modeling Self-Ionized Plasma Wakefield Acceleration for Afterburner Parameters Using QuickPIC 2905
 
  • M. Zhou, C.E. Clayton, V.K. Decyk, C. Huang, D.K. Johnson, C. Joshi, W. Lu, W.B. Mori, F.S. Tsung
    UCLA, Los Angeles, California
  • F.-J. Decker, R.H. Iverson, C.L. O'Connell, D.R. Walz
    SLAC, Menlo Park, California
  • S. Deng, T.C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  Funding: DOE

A plasma wakefield accelerator (PWFA) has been proposed as a way to double the energy of a future linear collider. This afterburner concept will require meter long uniform plasmas. For the parameters envisaged in possible afterburner stages, the self-fields of the particle beam are intense enough to tunnel ionize some neutral gases such as lithium. Tunnel ionization has been investigated as a way for the beam itself to create the plasma.* Furthermore, tunnel ionization in a neutral or partially pre-ionized gas may create new plasma electrons and alter the plasma wake.*,** Unfortunately, it is not possible to model a PWFA with afterburner parameters using the models described in Bruhwiler et al. and Deng et al. Here we describe the addition of a tunnel ionization package using the ADK model into QuickPIC, a highly efficient quasi-static particle in cell (PIC) code which can model a PWFA with afterburner parameters. There is excellent agreement between QuickPIC and OSIRIS(a full PIC code) for pre-ionized plasmas. Effects of self-ionization on hosing instability –one of the most critical issues to overcome to make an afterburner a reality – for a bunch propagating in a plasma hundreds of betatron oscillations long will be discussed.

*D. L. Bruhwiler et al., Phys. Plasmas 10 (2003), p. 2022. **S. Deng et al., Phys. Rev. E, 68, 047401 (2003).

 
TPAE058 Plasma Dark Current in Self-ionized Plasma Wake Field Accelerators (PWFA) 3444
 
  • E. Oz, S. Deng, T.C. Katsouleas, P. Muggli
    USC, Los Angeles, California
  • C.D. Barnes, F.-J. Decker, M.J. Hogan, R.H. Iverson, P. Krejcik, C.L. O'Connell, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • C.E. Clayton, C. Huang, D.K. Johnson, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, M. Zhou
    UCLA, Los Angeles, California
 
  Particle trapping is investigated with experiment, theory and simulations for conditions relevant to beam driven Plasma Wake Field Accelerators. Such trapping produces plasma dark current when the wakefield aplitude is above a threshold values and may place a limit on the maximum acceleration gradient in a PWFA. Trapping and dark current are enhanced when in an ionizing plasma, that is self-ionized by the beam as well as in gradual density gradients. In the E164X conducted at the Stanford Linear Accelerator Center by a collaboration of USC, UCLA and SLAC, evidence of trapping has been observed. Here we present experimental results and a simplified analytical model of the particle trapping threshold which is compared to simulations done with an object oriented fully parallel 3-D PIC code OSIRIS.  
TOPA002 Review of Beam-Driven Plasma Wakefield Experiments at SLAC
 
  • M.J. Hogan, C.D. Barnes, F.-J. Decker, P. Emma, R.H. Iverson, P. Krejcik, C.L. O'Connell, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • C.E. Clayton, C. Huang, D.K. Johnson, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori
    UCLA, Los Angeles, California
  • S. Deng, T.C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  Funding: Department of Energy contracts DE-AC02-76SF00515 (SLAC), DE-FG03-92ER40745, DE-FG03-98DP00211, DE-FG03-92ER40727, DE-AC-0376SF0098, and National Science Foundation grants No. ECS-9632735, DMS-9722121 and PHY-0078715.

In the plasma wakefield accelerator, a short relativistic-electron bunch drives a large amplitude plasma wave or wake. In experiment E-164X, we use the 28.5 GeV, ultra-short (?80 femtosecond), high peak-current (?30 kiloamperes) bunch now available at the Stanford Linear Accelerator Center Final Focus Test Beam facility. The head of this bunch fieldionizes a lithium vapor and excites the wake, and the tail samples the accelerating field. The latter is accomplished by setting the plasma density to match the plasma wavelength to the bunch length. After the plasma, the bunch is dispersed in energy by an imaging magnetic-spectrometer. Preliminary analysis shows that gradients in excess of 15 GeV/m are excited over a plasma length of approximately 10 cm, leading to energy gain on the order of of 1.5 GeV, or about an order of magnitude larger than energy gains reported to date. This gradient is also three orders of magnitude larger than that in the three-kilometer long Stanford linear accelerator that produces the incoming beam. These results are obtained in a new regime for beam-driven plasma accelerators in which the electron bunch creates its own plasma. The current status of the experiment as well as future plans will be discussed.

 
TOPA006 High Energy Gain IFEL at UCLA Neptune Laboratory 500
 
  • P. Musumeci, S. Boucher, C.E. Clayton, A. Doyuran, R.J. England, C. Joshi, C. Pellegrini, J.E. Ralph, J.B. Rosenzweig, C. Sung, S. Tochitsky, G. Travish, R.B. Yoder
    UCLA, Los Angeles, California
  • S.V. Tolmachev, A. Varfolomeev, A. Varfolomeev, T.V. Yarovoi
    RRC Kurchatov Institute, Moscow
 
  We report the observation of energy gain in excess of 20 MeV at the Inverse Free Electron Laser Accelerator experiment at the Neptune Laboratory at UCLA. A 14.5 MeV electron beam is injected in an undulator strongly tapered in period and field amplitude. The IFEL driver is a CO2 10.6 mkm laser with power larger than 400 GW. The Rayleigh range of the laser, ~ 1.8 cm, is much shorter than the undulator length so that the interaction is diffraction dominated. A few per cent of the injected particles are trapped in a stable accelerating bucket. Electrons with energies up to 35 MeV are measured by a magnetic spectrometer. Simulations, in good agreement with the experimental data, show that most of the energy gain occurs in the first half of the undulator at a gradient of 70 MeV/m and that the structure in the measured energy spectrum arises because of higher harmonic IFEL interaction in the second half of the undulator.  
RPAE019 Positron Source from Betatron X-Rays Emitted in a Plasma Wiggler 1625
 
  • D.K. Johnson, C.E. Clayton, C. Huang, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • C.D. Barnes, F.-J. Decker, M.J. Hogan, R.H. Iverson, P. Krejcik, C.L. O'Connell, R. Siemann, D.R. Walz
    SLAC, Menlo Park, California
  • S. Deng, T.C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  In the E-167 plasma wakefield accelerator (PWFA) experiments in the Final Focus Test Beam (FFTB) at the Stanford Linear Accelerator Center (SLAC), an ultra-short, 28.5 GeV electron beam field ionizes a neutral column of Lithium vapor. In the underdense regime, all plasma electrons are expelled creating an ion column. The beam electrons undergo multiple betatron oscillations leading to a large flux of broadband synchrotron radiation. With a plasma density of 3x1017 cm-3, the effective focusing gradient is near 9 MT/m with critical photon energies exceeding 50 MeV for on-axis radiation. A positron source is the initial application being explored for these X-rays, as photo-production of positrons eliminates many of the thermal stress and shock wave issues associated with traditional Bremsstrahlung sources. Photo-production of positrons has been well-studied; however, the brightness of plasma X-ray sources provides certain advantages. In this paper, we present results of the simulated radiation spectra for the E-167 experiments, and compute the expected positron yield.  
RPAE021 Feasibility Study of a Laser Beat-Wave Seeded THz FEL at the Neptune Laboratory 1721
 
  • S. Reiche, C. Joshi, C. Pellegrini, J.B. Rosenzweig, S. Tochitsky
    UCLA, Los Angeles, California
  • G. Shvets
    The University of Texas at Austin, Austin, Texas
 
  Funding: The work was supported by the DOE Contract No. DE-FG03-92ER40727.

Free-Electron Laser in the THz range can be used to generate high output power radiation or to modulate the electron beam longitudinally on the radiation wavelength scale. Microbunching on the scale of 1-5 THz is of particular importance for potential phase-locking of a modulated electron beam to a laser-driven plasma accelerating structure. However the lack of a seeding source for the FEL at this spectral range limits operation to a SASE FEL only, which denies a subpicosecond synchronization of the current modulation or radiation with an external laser source. One possibility to overcome this problem is to seed the FEL with two external laser beams, which difference (beat-wave) frequency is matched to the resonant FEL frequency in the THz range. In this presentation we study feasibility of an experiment on laser beat-wave injection in the THz FEL considered at the UCLA Neptune Laboratory, where both a high brightness photoinjector and a two-wavelength, TW-class CO2 laser system exist. By incorporating the energy modulation of the electron beam by the ponderomotive force of the beat-wave in a modified version of the time-dependent FEL code Genesis 1.3, the performance of a FEL at Neptune is simulated and analyzed.

 
RPAP033 Investigation of X-Ray Harmonics of the Polarized Inverse Compton Scattering Experiment at UCLA 2303
 
  • A. Doyuran, R.J. England, C. Joshi, J. Lim, J.B. Rosenzweig, S. Tochitsky, G. Travish, O. Williams
    UCLA, Los Angeles, California
 
  Funding: U.S. Dept. of Energy grant DE-FG03-92ER40693.

An Inverse Compton Scattering (ICS) experiment, which will investigate nonlinear properties of scattering utilizing a terawatt CO2 laser system with various polarizations, is ongoing at the UCLA Neptune Laboratory. When the normalized amplitude of the incident laser’s vector potential a0 is larger than unity the scattering occurs in the nonlinear region; therefore, higher harmonics are also produced. ICS can be used, e.g., for a polarized positron source by striking a thin target (such as tungsten) with the polarized X-rays. As such, it is critical to demonstrate the production of polarized scattered photons and to investigate the ICS process as it enters the nonlinear regime. We present the description of the experimental set up and equipment utilized, including diagnostics for electron and photon beam detection. We present the current status of the experiment.