A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Jones, O.R.

Paper Title Page
MPPP004 LHC Orbit Stablisation Tests at the SPS 886
 
  • R.J. Steinhagen, J. Andersson, L.K. Jensen, O.R. Jones, J. Wenninger
    CERN, Geneva
 
  The LHC presently build at CERN is the first proton collider that requires a continuous orbit control for safe and reliable machine operation. A realistic test of the orbit feedback system has been performed in 2004 using already present LHC instrumentation and infrastructure on a 270 GeV coasting beam in the SPS. It has been demonstrated that the chosen feedback architecture can stabilise the beam better than 10 micrometre and is essentially limited by the noise of the beam position monitor and the bandwidth of the corrector magnets. The achieved orbit stability is comparable to those found at modern light sources and gives enough operational margin with respect to the requirements of the LHC Cleaning System (70 micrometre). Estimates for the long term drifts and achievable stability will be presented based on the experimental results.  
TPAP008 Measurements of the LHC Collimator Impedance with Beam in the SPS 1132
 
  • H. Burkhardt, G. Arduini, R.W. Assmann, F. Caspers, M. Gasior, A. Grudiev, O.R. Jones, T. Kroyer, E. Métral, S. Redaelli, G. Robert-Demolaize, F. Roncarolo, D. Schulte, R.J. Steinhagen, J. Wenninger, F. Zimmermann
    CERN, Geneva
 
  The transverse impedance of the LHC collimators will likely dominate the overall transverse impedance in the LHC at high energies and potentially limit the maximum intensity. A prototype collimator was recently tested in the SPS. Small, but significant tune shifts depending on the collimator position have been observed using different independent high resolution tune measurement methods. In addition trapped modes predicted from numerical simulation at the ends of the collimator jaws have been identified by bench measurement techniques as well as with the beam. We present a description of the measurements and an analysis of the results.  
TPAP052 Possible Phase Loop for the Global Decoupling 3182
 
  • Y. Luo, P. Cameron, A. Della Penna, A. Marusic, S. Peggs, T. Roser, D. Trbojevic
    BNL, Upton, Long Island, New York
  • O.R. Jones
    CERN, Geneva
 
  Funding: Work supported by U.S. DOE under contract No. DE-AC02-98CH10886.

Besides two eigentunes Q1 and Q2 , two amplitude ratios r1 and r2 and two phase differences ∆ φ1 and ∆ φ2 are introduced for the global coupling observation. Simulations are carried out to check their behaviors in the process of the skew quadrupole strength scans. Some attractive features of the phase differences ∆ φ1,2 have been found, which are possibly useful for the global decoupling phase loop, or future global decoupling feedback. Analytical descriptions to these 6 quantities are described in the Twiss parameters through the linear coupling's action-angle parameterization, or in coupling coefficient through the linear coupling's Hamiltonian perturbation theory. Dedicated beam experiments are carried out at the Relativistic Heavy Ion Collider (RHIC) to check the global coupling observables from the phase lock loop (PLL) system. The six observables are measured under PLL driving oscillations during the 1-D and 2-D skew quadrupole scans. The experimental results are reported and discussions are given.