A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hunter, T.

Paper Title Page
TOAA008 Progress and Status in SNS Magnet Measurements at ORNL 609
 
  • T. Hunter, SH. Heimsoth, DL. Lebon, RM. McBrien, J.-G. Wang
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The Spallation Neutron Source (SNS) contains more than 600 magnets. Among them, about 400 magnets for the Linac and transfer lines are being measured on site at Oak Ridge National Laboratory. These magnets include Permanent Magnet Quadrupoles, Electro-magnetic Quadrupoles, Dipoles and Correctors. The Permanent Magnet Quadrupoles are installed in the Drift Tube Linac (DTL) and are the only Permanent Magnets in the machine. These measurements are for magnets installed in the DTL, Coupled Cavity Linac (CCL), Superconducting Linac (SCL), High Energy Beam Transport (HEBT), and the Ring to Target Beam Transport (RTBT) line. All magnets have met specifications. Approximately three fourths of the magnets have so far been measured and installed. This presentation outlines the magnet measurements for SNS at ORNL and overviews the activities and accomplishments to date.

 
RPPT070 Status Report on the Installation of the Warm Sections for the Superconducting Linac at the SNS 3828
 
  • R. Kersevan, D.P. Briggs, I.E. Campisi, J.A. Crandall, D.L. Douglas, T. Hunter, P. Ladd, C. Luck, R.C. Morton, K.S. Russell, D. Stout
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley and Oak Ridge.

The SNS superconducting linac (SCL) consists of 23 cryomodules (CMs), with possibly 9 additional CMs being added for future energy upgrade from 1 GeV to 1.3 GeV. A total of 32 warm sections separate the comparatively short CMs, and this allows a CM exchange within 48 hours, in order to meet demanding beam availability specifications. The 32 warm section chambers are installed between each pair of CMs, with each section containing a quadrupole doublet, beam diagnostics, and pumping. The chambers are approximately 1.6 m long, have one bellow installed at each end for alignment, and are pumped by one ion-pump. The preparation and installation of these chambers must be made under stringent clean and particulate-free conditions, in order to ensure that the performance of the SCL CMs is not compromised. This paper will discuss the development of the cleaning, preparation, and installation procedures that have been adopted for the warm sections, and the vacuum performance of this system.

 
RPPT071 Installation of the Spallation Neutron Source (SNS) Superconducting Linac 3838
 
  • D. Stout, I.E. Campisi, F. Casagrande, R.I. Cutler, D.R. Hatfield, M.P. Howell, T. Hunter, R. Kersevan, P. Ladd, W.H. Strong
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos and Oak Ridge.

The Spallation Neutron Source (SNS) cold linac consists of 11 medium beta (0.61) and 12 high beta (0.81) superconducting RF cryomodules, 32 intersegment quadrupole magnet/diagnostics stations, 9 spool beampipes for future upgrade cryomodules, and two differential pumping stations on either side of the linac. The cryomodules and spool beampipes were designed and manufactured by Jefferson Laboratory, and the quadrupole magnets and beam position monitors were designed and furnished by Los Alamos National Laboratory. The remaining items were designed by ORNL. At present we are installing and testing the cold linac. Experience gained during installation will be presented. The performance in terms of mechanical and cryogenic systems will be described.