A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hsiung, G.-Y.

Paper Title Page
MPPT032 Construction and Performance of Superconducting Magnets for Synchrotron Radiation 2218
 
  • C.-S. Hwang, C.-H. Chang, C.-K. Chang, H.-P. Chang, C.-T. Chen, H.-H. Chen, J. Chen, J.-R. Chen, Y.-C. Chien, T.-C. Fan, G.-Y. Hsiung, K.-T. Hsu, S-N. Hsu, M.-H. Huang, C.-C. Kuo, F.-Y. Lin
    NSRRC, Hsinchu
 
  Two superconducting magnets, one wavelength shifter (SWLS) with a field of 5 T and one wiggler (SW6) with a field of 3.2 T, were constructed and routinely operated at NSRRC for generating synchrotron x-rays. In addition, three multipole wigglers (IASW) with fields of 3.1 T will be constructed and installed each in the three achromatic short straight sections. A warm beam duct of 20 mm inner gap and a 1.5 W GM type cryo-cooler were chosen for the SWLS to achieve cryogen-free operation. For the SW6, a cold beam duct of 11 mm inner gap was kept at 100 K temperature and no trim coil compensation is necessary for its operation. Meanwhile, no beam loss was observed when the SW6 was quenched. A cryogenic plant with cooling power of 450 W was constructed to supply the liquid helium for the four superconducting wigglers. The design concept, magnetic field quality, the commissioning results, and the operation performance of these magnets will be presented.  
TPPT066 Successful Operation of the 500 MHz SRF Module at TLS 3706
 
  • C. Wang, L.-H. Chang, S.-S. Chang, C.-T. Chen, F.-T. Chung, F.-Z. Hsiao, G.-Y. Hsiung, K.-T. Hsu, C.-C. Kuo, H.C. Li, M.-C. Lin, R.J. Lin, Y.K. Lin, G.-H. Luo, M.H. Tsai, J.Y. Yang, T.-T. Yang, M.-S. Yeh
    NSRRC, Hsinchu
 
  A superconducting radio frequency (SRF) cavity of CESR-III design was installed sucessfully in the electron storage ring at the National Synchrotron Radiation Research Center (NSRRC) in Taiwan. The project goals are to double the photon flux by raising the electron beam current and to increase the beam stability by taking advantage of the well-damped high-order modes of SRF cavity. Nowadays, SRF cavity has become the key technology for new synchrotron light sources under construction or planning worldwide. The first operational experience of the SRF cavity at the NSRRC will be presented.