A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Horioka, K.

Paper Title Page
FPAE020 Induction Acceleration of a Single RF Bunch in the KEK PS 1679
 
  • K. Takayama, D.A. Arakawa, Y.A. Arakida, S. Igarashi, T. Iwashita, T. Kono, E. Nakamura, M. Sakuda, H. Sato, Y. Shimosaki, M.J. Shirakata, T. Sueno, K. Torikai, T. Toyama, M. Wake, I. Yamane
    KEK, Ibaraki
  • K. Horioka
    TIT, Yokohama
  • A.K. Kawasaki, A. Tokuchi
    NICHICON, Shiga
  • J. Kishiro
    JAERI/LINAC, Ibaraki-ken
  • K. Koseki
    GUAS/AS, Ibaraki
  • M.S. Shiho
    JAERI/NAKA, Ibaraki-ken
  • M. Watanabe
    JAERI/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
  A single bunch trapped in an RF bucket was accelerated by induction devices from 500 MeV to 8GeV beyond transition energy in the KEK-PS. This is the first demonstration of induction acceleration in a high energy circular ring. The acceleration was confirmed by measuring a temporal evolution of the RF phase through an entire acceleration.* Key devices in an induction acceleration system are an induction accelerating cavity capable of generating an induced voltage of 2kV/cell, a pulse modulator to drive the cavity (switching driver), and a DSP system to control gate signals for switching. Their remarkable characteristics are its repetition ratio of about 1MHz and duty factor of 50%. All devices have been newly developed at KEK so as to meet this requirement. The pulse modulator employing MOSFETs as switching elements is connected with the accelerating cavity through a long transmission cable in order to avoid a high-dose irradiation in the accelerator tunnel. The induction system has been running beyond more than 24 hours without any troubles. The paper will take an introductive role for related other 6 papers too, which describe more technical aspects and novel beam physics associated with the induction acceleration.

*K.Takayama et al., submitted to Phys. Rev. Lett., http://www.arxiv.org/pdf/physics/0412006.

 
FPAT042 Beam Dynamics and Pulse Duration Control During Final Beam Bunching in Driver System for Heavy Ion Inertial Fusion 2735
 
  • T. Kikuchi, S. Kawata, T. Someya
    Utsunomiya University, Utsunomiya
  • K. Horioka, M. Nakajima
    TIT, Yokohama
  • T. Katayama
    CNS, Saitama
 
  Beam dynamics is investigated by multi-particle simulations during a final beam bunching in a driver system for heavy ion inertial fusion (HIF). The longitudinal bunch compression causes the beam instability induced by the strong space charge effect. The multi-particle simulation can indicate the emittance growth due to the longitudinal bunch compression. Dependence in the beam pulse duration is also investigated for effective pellet implosion in HIF. Not only the spatial nonuniformity of the beam illumination, but also the errors of the beam pulse duration cause changes of implosion dynamics. The allowable regime of the beam pulse duration for the effective fusion output becomes narrow with decreasing the input beam energy. The voltage accuracy requirement at the beam velocity modulator is also estimated for the final beam bunching. It is estimated that the integrated voltage error is allowable as a few percent.  
FPAT043 Application of Selected Momentum Correction Method Using Induction Voltage Modulator 2762
 
  • T. Kikuchi, S. Kawata
    Utsunomiya University, Utsunomiya
  • K. Horioka
    TIT, Yokohama
  • T. Katayama
    CNS, Saitama
 
  A method for momentum correction of a selected beam particle using a controllable induction voltage modulator is proposed for a low flux ion beam. The corrected ion beam has a small momentum error restricted by a detection error at a kinetic energy analyzer and a voltage fluctuation at the induction voltage modulator. The application of this selected momentum correction scheme is discussed by using numerical simulations.