A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hanft, R.

Paper Title Page
MPPT051 Reshimming of Tevatron Dipoles; A Process-Quality and Lessons-Learned Perspective 3156
 
  • J.N. Blowers, R. Hanft, D.J. Harding, J.A. John, W.F. Robotham
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH03000.

Over the last two years corrections have been made for the skew quadrupole moment in 530 of the 774 installed dipoles in the Tevatron. This process of modifying the magnets in situ has inherent risk of degrading the performance of the superconducting accelerator. In order to manage the risk, as well as to ensure the corrections were done consistently, formal quality tools were used to plan and verify the work. The quality tools used to define the process and for quality control are discussed, along with highlights of lessons learned.

 
MPPT053 Restoring the Skew Quadrupole Moment in Tevatron Dipoles 3244
 
  • D.J. Harding, P. Bauer, J.N. Blowers, J. DiMarco, H.D. Glass, R. Hanft, J.A. John, W.F. Robotham, M. Tartaglia, J. Tompkins, G. Velev
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH03000.

In early 2003 it was realized that mechanical changes in the Tevatron dipoles had led to a deterioration of the magnetic field quality that was hindering operation of the accelerator. After extensive study, a remediation program was started in late 2003 which will continue through 2005. The mechanical and magnetic effects are discussed. The readjustment process and experience are reported, along with other observations on aging magnets.

 
TPAP029 Measurements of Field Decay and Snapback Effect on Tevatron Dipole and Quadrupole Magnets 2098
 
  • G. Velev, G. Ambrosio, G. Annala, P. Bauer, R. H. Carcagno, J. DiMarco, H.D. Glass, R. Hanft, R.D. Kephart, M.J. Lamm, M.A. Martens, P. Schlabach, C. Sylvester, M. Tartaglia, J. Tompkins
    Fermilab, Batavia, Illinois
 
  Since the beginning of 2002 an intensive measurement program has been performed at the Fermilab Magnet Test Facility to understand dynamic effects in the Tevatron magnets. Based on the results of this program a new correction algorithm was proposed to compensate for the decay of the sextupole field during the dwell at injection and for the subsequent field "snapback" during the first few seconds of the energy ramp. Beam studies showed that the new correction algorithm works better than the original one, and improves the Tevatron efficiency by at least 3%. The beam studies also indicated insufficient correction during the first 20 s of the injection plateau where an unexpected discrepancy of 0.15 sextupole units of extra drift was observed. This paper reports on the most recent measurements of the Tevatron dipoles field at the beginning of the injection plateau. Results on the field decay and snapback in the Tevatron quadrupoles are also presented.