A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Han, Y.J.

Paper Title Page
MPPP027 Suppression of the Longitudinal Coupled-Bunch Instabilities by the RF Phase Modulation in the Pohang Light Source 1970
 
  • I. Hwang, M. Yoon
    POSTECH, Pohang, Kyungbuk
  • Y.J. Han, E.-S. Kim, J.S. Yang
    PAL, Pohang, Kyungbuk
 
  In the 2.5 GeV Pohang Light Source, we have investigated the suppression of the longitudinal coupled instabilities (CBI) caused by higher order modes (HOMs) of RF cavities. At higher beam current than 170 mA the 758 MHz or 1300 MHz HOMs occurred and the beam could be unstable. The longitudinal CBI could be suppressed by modulating the phase of an RF accelerating voltage at a frequency of 2 times the synchrotron oscillation frequency and by adjusting the water temperatures of the RF cavities. The longitudinal beam oscillations measured by streak camera in synchro-scan mode were shown. The experiment results were compared with the macro particle tracking simulation.  
TPAT011 Impedance Analysis of Longitudinal Bunch Shape Measurements at PLS
 
  • I. Hwang, M. Yoon
    POSTECH, Pohang, Kyungbuk
  • Y.J. Han, E.-S. Kim
    PAL, Pohang, Kyungbuk
 
  We measured the longitudinal bunch shape by streak camera at 2.5 GeV Pohang Light Source. The impedances estimated by a series R+L model indicate a resistance R= 960 ohm, an inductance L= 80 nH and a longitudinal impedance Z/n= 0.53 ohm. The scaling law for the bunch lengthenig is expressed as I0.22. The effects of insertion device in the ring on the ring impedance, particularly the vertical height of in-vacuum undulator are also presented.  
WPAT014 Sequence Control System of 1-MW CW Klystron for the PEFP 1401
 
  • B.R. Park, J. Choi, M.-H. Chun, Y.J. Han, M.H. Jeong, S.-C. Kim, J.S. Yang, I.H. Yu
    PAL, Pohang, Kyungbuk
 
  Funding: Work support by the PEFP(Proton Engineering Frontier Project), Korea.

Sequence control system of 1-MW CW klystron for the PEFP (Proton Engineering Frontier Project) has been developed in order to drive the 1-MW klystron amplifier. The system is able to control several power supplies and many environment conditions. The hardware of sequence control and the interlock system are based on the Allen-Bradley's SLC500 Program Logic Controller (PLC). Also the system can be controlled by a touch screen at local mode or Ethernet network with high level HMI at remote mode.

 
WPAT015 The Digital Feedback RF Control System of the RFQ and DTL1 for 100 MeV Proton Linac of PEFP 1443
 
  • I.H. Yu, Y.J. Han, H.-S. Kang, D.T. Kim, S.-C. Kim, I.-S. Park, J.C. Yoon
    PAL, Pohang, Kyungbuk
  • Y.-S. Cho, H.-J. Kwon, K.T. Seol
    KAERI, Daejon
 
  Funding: Work supported by the PEFP (Proton Engineering Frontier Project), Korea

The 100 MeV Proton linear accelerator (Linac) for the PEFP (Proton Engineering Frontier Project) will include 1 RFQ and 1 DTL1 at 350 MHz as well as 7 DTL2 cavities at 700 MHz. The low level RF system with the digital feedback RF control provides the field control to accelerate a 20mA proton beam from 50 keV to 20 MeV with a RFQ and a DTL1 at 350M Hz. The FPGA-based digital feedback RF control system has been built and is used to control cavity field amplitude within ± 1% and relative phase within ± 1°. The fast digital processing is networked to the EPICS-based control system with an embedded processor (Blackfin). In this paper, the detailed description of the digital feedback RF control system will be described with the performance test results.

 
RPAE009 Design Considerations for the Stability Improvement of Klystron-Modulator for PAL XFEL 1165
 
  • J.-S. Oh, Y.J. Han, I.S. Ko, W. Namkung, S.S. Park
    PAL, Pohang, Kyungbuk
 
  Funding: Supported by the POSCO and the MOST, Korea.

The PAL linac is planed to be converted to a SASE-XFEL facility (PAL XFEL) that supplies coherent X-rays down to 0.3-nm wavelength. PAL XEL requires a 3-GeV driver linac and a 60-m long in-vacuum undulator to realize an X-ray SASE-FEL. The linac should supply highly bright beams with emittance of 1.2 mm-mrad, a peak current of 3.5 kA, and a low energy spread of 0.03%. The RF stability of 0.06% rms is required for both RF phase and amplitude for reasonably stable SASE output. This stability is mainly determined by a klystron-modulator. Therefore present stability level of the modulator has to be improved 10 times better to get the pulse stability of 0.05%. The regulation methods such as traditional de-Q’ing and precision inverter charging technology are reviewed. Design considerations for the stability improvement of klystron-modulator for PAL XFEL are presented.

 
RPAT054 Beam Position Monitor at the PLS BTL 3289
 
  • S.-C. Kim, M.-H. Chun, Y.J. Han, J.Y. Huang, D.T. Kim, W.W. Lee
    PAL, Pohang, Kyungbuk
 
  Funding: Work supported by the Ministry of Science and Technology, Korea.

Electron Linac at the Pohnag Accelerator Laboratory (PAL) has been operated continuously as the full energy injector for storage ring. Linac and storage ring energy has been 2.0 GeV since Dec. 1994, and 2.5 GeV since Oct. 2002. In Aug. 2004, thirteen BPMs are newly installed at BTL(Beam Transport Line) for beam trajectory measurement and feedback. These BPMs consist of 100mm strip-line electrodes in 150mm long chamber, and 500MHz log-ratio signal processing circuits. BPM data acquisition system is developed as EPICS IOC using NI S-series data acquisition board and NI LabView 7.1. BTL BPMs will be used for optic correction and beam energy feedback for PLS beam injection. This paper describes on design, test results, installation and data acquisition system of the PLS BTL BPM.

 
ROPB005 Recent Experiment Results on Fast Ion Instability at 2.5 GeV PLS 466
 
  • E.-S. Kim, Y.J. Han, J.Y. Huang, I.S. Ko, P.C.D. Park, S.J. Park
    PAL, Pohang, Kyungbuk
  • H. Hukuma, H. Ikeda
    KEK, Ibaraki
 
  We present recent experiment results on the fast ion instability that were performed at the PLS storage ring. With higher vacuum pressures of three orders of magnitude than nominal one by He gas injection into the ring, increases of a factor of around three in the vertical beam size were observed by interferometer system. From the various measurement results, we estimated growth times for the instability as a funcion of vacuum pressure and beam current. We also compared the results with those of the computer simulations and analytical calculations.