A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hagge, L.

Paper Title Page
RPPT005 Establishing a Collaborative Planning Procedure for the XFEL 961
 
  • L. Hagge, J. Buerger, K. Jaehnke, K. Lappe, A.S. Schwarz, T. Stoye, N. Welle
    DESY, Hamburg
 
  Building a new accelerator requires a consistent common design of the entire complex, including machine, tunnels, buildings and infrastructure. The efforts involve experts from many disciplines. Complication arises as different expert groups are contributing at different project phases: buildings and technical infrastructure are constructed first, thus their design has to be fixed early in the project and is then imposing constraints e.g. on the machine layout while accelerator R&D is still being continued. In view of these challenges, a dedicated planning and design procedure has to be established which provides “just-enough” details where needed while preserving maximum flexibility for other subsystems, and which can also manage later changes if they become necessary. The poster presents experience from planning the XFEL. Expert groups can create and maintain separate design models of their components, which at the same time can be combined into a common overall design model. The planning procedure relies on commercial tools used in industry (specification database, engineering data management and 3D CAD systems) which are being adapted to the culture and organization of HEP collaborations.  
FPAT078 Supporting Cavity Production Using an Engineering Data Management System 4024
 
  • J. Buerger, J.A. Dammann, L. Hagge, J.I. Iversen, A. Matheisen, W. Singer
    DESY, Hamburg
 
  The reliable production of superconducting cavities is an essential issue for any future accelerator applying the “cold” technology. At DESY the complex manufacturing process is supported by an engineering data management system (EDMS). During the mechanical manufacturing process many quality checks are performed and their results are documented in inspection sheets, which are stored in the system and used for controlling. The EDMS further controls the subsequent preparation process by automatically creating and issuing work instructions for the treatment of the surfaces of the cavities. In parallel the necessary documentation for quality assurance is generated. The documentation is linked to the product breakdown structure; this enables users to easily navigate from inspection sheets of selected components forward to their 3D CAD model as well as back to the results of the examination of the original niobium sheet. The poster presents the structural approach for the documentation using a commercially available EDMS. Supporting the lifecycle by electronic workflow techniques is described.