A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Gottschalk, S.C.

Paper Title Page
MPPT028 An Air Bearing Rotating Coil Magnetic Measurement System 2038
 
  • S.C. Gottschalk, K.W. Kangas, D.J. Taylor, W.J. Thayer
    STI, Washington
 
  This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discussed.  
MPPT029 Performance of an Adjustable Strength Permanent Magnet Quadrupole 2071
 
  • S.C. Gottschalk, T.E. DeHart, K.W. Kangas
    STI, Washington
  • C.M. Spencer
    SLAC, Menlo Park, California
  • J.T. Volk
    Fermilab, Batavia, Illinois
 
  Funding: Department of Energy Grant DE-FG03-01ER83305.

An adjustable strength permanent magnet quadrupole suitable for use in Next Linear Collider has been built and tested. The pole length is 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) is 68.7 Tesla. This paper describes measurements of strength, magnetic centerline and field quality made using an air bearing rotating coil system. The magnetic centerline stability during -20% strength adjustment proposed for beam based alignment was < 0.2 microns. Strength hysteresis was negligible. Thermal expansion of quadrupole and measurement parts caused a repeatable and easily compensated change in the vertical magnetic centerline. Calibration procedures as well as centerline measurements made over a wider tuning range of 100% to 20% in strength useful for a wide range of applications will be described. The impact of eddy currents in the steel poles on the magnetic field during strength adjustments will be reported.

 
MPPT030 Magnetic and Engineering Analysis of an Adjustable Strength Permanent Magnet Quadrupole 2122
 
  • S.C. Gottschalk, D.J. Taylor
    STI, Washington
 
  Funding: Department of Energy grant DE-FG03-01ER83305.

Magnetic and engineering analyses used in the design of an adjustable strength permanent magnet quadrupole will be reported. The quadrupole designed has a pole length of 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) of 68.7Tesla. Analyses of magnetic strength, field quality, magnetic centerline, temperature compensation and dynamic eddy currents induced during field adjustments will be presented. Magnet sorting strategies, pole positioning sensitivity, component forces, and other sensitivity analyses will be presented. Engineering analyses of stress, deflection and thermal effects as well as compensation strategies will also be shown.